首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the cellular glutathione content is reduced, adding oxygen (130 mumol dm-3) 7 ms after irradiation of hypoxic cells increases the radiosensitivity (factor approximately 1.25), whereas it has much less effect in normal cells.  相似文献   

2.
Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and non-protein-bound SH (NPSH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20 per cent for the three types of radiation damage. Also under severely hypoxic conditions (0.01 microM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30 per cent). At somewhat higher concentrations of oxygen (0.5-10 microM) however, the sensitization amounted to about 90 per cent for the induction of ssb and dsb and about 50 per cent for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen.  相似文献   

3.
The role of thiols in cellular response to radiation and drugs   总被引:3,自引:0,他引:3  
Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells. This mechanism involves both thiol-linked hydrogen donation to oxygen radical adducts to produce hydroperoxides followed by a GSH peroxidase-catalyzed reduction of the hydroperoxides to intermediates entering into metabolic pathways to produce the original molecule.  相似文献   

4.
The role of intracellular non-protein bound sulphydryl compounds (NPSH), and in particular that of glutathione (GSH), in the response of cells to ionizing radiation under different O2 concentrations has been assessed using cell strains deficient in glutathione synthetase and exhibiting different NPSH levels. The cell strains used originated from patients with 5-oxoprolinuria and from their relatives (heterozygotes and proficient homozygotes). No correlation has been found between NPSH and GSH concentrations and radiosensitivity under oxic, aerobic and hypoxic conditions. However, a highly significant correlation has been observed between radiosensitivity under hypoxic conditions (and therefore the oxygen enhancement ratio) and the glutathione synthetase activity, suggesting that synthesis of GSH is required after irradiation. In order to explain our results we postulated, beside radical processes, the existence of a GSH-dependent enzymatic repair mechanism for N2 type damage. Hypoxic radio-sensitivity measured with survival curves would result from the interaction of both competition and biochemical repair processes.  相似文献   

5.
5-HT applied prior to, immediately or 5 min after irradiation decreased equally the radiation damage to Ehrlich ascite tumor cells. A decrease in the endogenous glutathione content by N-ethylmaleimide (NEM) led to reduced the 5-HT radio-modifying effect. Its radio-modifying effect decreased irrespective of whether NEM was applied prior to or after irradiation.  相似文献   

6.
Experiments were performed to study the influence of hypoxic pretreatment on the radiation response of A431 human squamous carcinoma cells. Reaeration for 10 min after chronic hypoxia (greater than 2 h) was found to enhance the radiosensitivity of A431 cells, and the maximal effect was seen for those cells reaerated after 12 h of hypoxia. The radiosensitivity enhancement for reaerated cells after 12 h of hypoxia was maximized by 5 min after the return to aerobic conditions and reached the control level by 12 h of reaeration. This enhanced radiosensitive state was characterized by a reduced shoulder region and increased slope of the radiation dose-response curve for cells in both the exponential and plateau phases of growth. There was a slight increase in the number of G1 and decrease in the number of S and G2 + M cells for both exponential- and plateau-phase cultures following 12 h hypoxic treatment. Although growth inhibition induced by 12 h of hypoxia was seen for cells in the exponential phase, there was no cell number change in the plateau-phase culture after hypoxia. Plating efficiency (PE) of cells in both growth phases was reduced by 30% after hypoxia. Furthermore, in the exponential-phase culture, the extent of reduction in PE after hypoxia was similar among cells in different phases of the cell cycle. Although S-phase cells in exponentially growing cultures were relatively more resistant to radiation than G1 and G2 + M cells, the cell age-response pattern was the same whether the cells had been aerobic or hypoxic before reaeration and irradiation. Furthermore, the enhancement ratio associated with reaeration after 12 h of hypoxia for these three subpopulations of cells was 1.3. Our results indicate that the increase in radiosensitivity due to reaeration after chronic hypoxia is unlikely to be related to the changes of cell cycle stage and growth phase during hypoxic treatment.  相似文献   

7.
This study determined the radiosensitivity of the human tumor xenograft HT29 and its glutathione (GSH) and cysteine (CYS) contents after treatment with both buthionine sulfoximine (BSO) and SR-2508 or SR-2508 alone. Tumor radiosensitivity was assessed by the in vitro colony assay and thiol content was measured by high-performance liquid chromatography. The radiosensitizing effect of SR-2508 is dose dependent and increases when higher doses of radiation are given. SR-2508 given alone does not modify GSH and CYS content; however, when given with BSO, the GSH level is significantly reduced, yet radiosensitivity of the HT29 tumor is only slightly increased. These results have been compared to our previously observed results of HT29 treatment with misonidazole (MISO), BSO, or MISO + BSO.  相似文献   

8.
Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 microM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure (t1/2 = 1.6 hr). Removal of BSO resulted in a rapid regeneration of GSH after 50 microM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 microM. Treatment with either of these two concentrations of BSO for up to 14 hr did not affect cell growth or viability. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 microM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. GSH depletion had the effect of shifting the enhancement ratio vs pO2 curve to lower oxygen tensions, making oxygen appear more efficient by a factor of approximately 2, based on the pO2 required to give an OER of 2.0. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. Thus MISO appeared to be more efficient in GSH-depleted cells by a factor of 13.5. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone (ER = 1.29-1.41). The effect of GSH depletion was approximately equal at all sensitizer concentrations tested, except at high oxygen tensions, where the effect was insignificantly small. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms.  相似文献   

9.
Chinese hamster cells (V79) and glutathione-proficient (GSH+/+) and glutathione-deficient (GSH-/-) human fibroblasts were treated with a glutathione (GSH)-depleting agent buthionine sulphoximine (BSO) and the hypoxic radiosensitizer misonidazole (MISO), separately or in combination. Subsequently, the cells were exposed to X-rays. Determination of the yield of single-strand DNA breaks (ssb) immediately after irradiation indicated no effect of BSO or MISO treatment when radiation exposure was made aerobically. Assuming that ssb determined immediately after irradiation reflects mainly the effect of radical processes, the results obtained with BSO and MISO, singly and in combination, agreed well with the predictions of a modified version of the 'competition model' using V79 and GSH+/+ cells. Some results obtained with GSH-/- cells could not be so explained.  相似文献   

10.
Four thiol-modifying compounds were used to inhibit murine lymphocyte mitogenesis. The compounds were a copper sulfate/O-phenanthroline complex (CuP) to oxidize surface thiols, N-ethyl maleimide (NEM) to alkylate surface and intracellular thiols, D,L-buthionine-S,R-sulfoximine (BSO) to prevent synthesis of glutathione, and hydrogen peroxide, which reacts with various cellular constituents, including sulfhydryls. Splenic lymphocytes were incubated with one of the four compounds, washed, and then stimulated with the B cell mitogen, LPS, or the T cell mitogen, Con A. In spite of their differing chemical reactivities and differing effects on cell viability, lipids, and total, protein, and non-protein thiols, the four sulfhydryl-modifying compounds had very similar effects on the kinetics and inhibition of lymphocyte growth. All compounds had complex effects on mitogenesis, causing enhanced, delayed, or inhibited tritiated thymidine incorporation. Although the total thiol contents of untreated T cells and B cells were found to be equivalent, the LPS response consistently was inhibited by lower concentrations than the Con A response, suggesting that B cells were more sensitive than T cells to thiol modification. To compare compounds the efficiency of inhibition was determined by functionally relating reductions in mitogenesis with reductions in thiol content of the cells. The compounds differed in inhibitory efficiency; thus, damage to some thiols must be more important than damage to others. CuP ablated mitogenesis with the least change in thiol content. Therefore, surface sulfhydryls appear critical in lymphocyte mitogenesis. With all compounds inhibition of mitogenesis occurred over a very narrow range of thiol content, suggesting that the thiols important in inhibition were few in number relative to the total thiol content of the cell.  相似文献   

11.
Oxygen enhancement of tumor radiosensitivity is attributed to DNA damage by reactive oxygen species. The mechanism remains unclear but may involve mitochondria as major sources of oxygen and nitrogen radicals as well as central effectors of energy homeostasis and apoptosis. Here we used dihydrorhodamine and 2',7'-dichlorodihydrofluorescein to compare mitochondrial and total cell generation, respectively, of reactive oxygen or nitrogen species in cells irradiated at 5 Gy. Irradiation in the presence of oxygen selectively stimulated mitochondrial radical production in HeLa and MeWo cells, but in MCF7 cells radical production was more generalized. In all three cell lines oxygen impaired cell proliferation as measured by resazurin reduction 7 days after irradiation. Antioxidants N-acetylcysteine, ascorbic acid, and melatonin largely prevented dye oxidation during normoxic irradiation yet had no effect on oxygen-dependent irradiation injury. However, NO synthase inhibitor N(G)-monomethyl-L-arginine protected HeLa and MCF7 though not MeWo cells, consistent with their different levels of constitutive NO generation. SB203580 inhibition of p38 MAPK appreciably protected HeLa and marginally protected MCF7 cells against oxygen-dependent irradiation injury, while the less specific JNK/SAPK inhibitor SP600125 and ERK inhibitor U0126 had no effect. None of the inhibitors affected MeWo radiosensitivity. Therefore oxygen-enhanced radiosensitivity in these tumor cell lines does not depend on extensive production of oxygen radicals and is cell-type dependent. NO mediates oxygen-dependent injury in HeLa and MCF7 cells, by p38-dependent and MAPK-independent mechanisms, respectively. In MeWo cells this oxygen-enhanced radiosensitivity is independent of both NO and MAPK signaling.  相似文献   

12.
Depletion of glutathione after gamma irradiation modifies survival   总被引:2,自引:0,他引:2  
The relationship between the intracellular glutathione (GSH) concentration and the aerobic radiation response was studied in Chinese hamster ovary cells. Various degrees of GSH depletion were produced by exposure to buthionine sulfoximine (BSO) and/or diethyl maleate (DEM). Diethyl maleate did not act as a classical radiosensitizer under the experimental conditions employed, nor did exposure to DEM/BSO nonspecifically affect protein thiols as measured by thiol blotting. Dose-response curves were obtained using cells irradiated in the absence or presence of DEM/BSO, which decreased GSH levels by 90-95%. Exposure to DEM/BSO did not affect the formation of DNA single-strand breaks or DNA-protein crosslinks measured immediately after irradiation performed at ice temperatures. Analysis of survival curves indicated that the Dq was decreased by 18% when GSH depletion occurred prior to, during, and after irradiation. The DEM/BSO exposure did not affect D0. To study postirradiation conditions, cells were exposed to 10 microM DEM prior to and during irradiation, which was performed at ice temperatures. Levels of GSH were depleted by 75% by this protocol. Immediately after irradiation, the cells were rapidly warmed by the addition of 37 degrees C growth medium containing either 10 or 90 microM DEM. Addition of 10 microM DEM after irradiation did not affect the degree of depletion, which remained constant at 75%. In contrast, GSH depletion was increased to 90% 10 min after addition of the 90 microM DEM. Addition of 90 microM DEM after irradiation produced a statistically significant difference in survival compared to addition of 10 microM DEM. In a second depletion protocol, cells were exposed to 100 microM DEM at room temperature for 5 min, irradiated, incubated at 37 degrees C for 1 h, washed, and then incubated in 50 microM BSO for 24 h. This depletion protocol reduced survival by a factor of 2.6 compared to cells not exposed to the combination of DEM/BSO. Survival was not affected if the cells were exposed to the DEM or BSO alone. This was interpreted to indicate that survival was not affected by GSH depletion occurring after irradiation unless depletion was rapid and sustained. The rate of repair of sublethal and potentially lethal damage was measured and found to be independent of the DEM/BSO exposure. These experimental results in addition to previous ones (Freeman and Meredith, Int. J. Radiat. Oncol. Biol. Phys. 13, 1371-1375, 1987) were interpreted to indicate that under aerobic conditions GSH depletion may alter the expression of radiation damage by affecting metabolic fixation.  相似文献   

13.
Chiu SJ  Lee MY  Chou WG  Lin LY 《Radiation research》2003,159(3):391-400
We investigated here the combined effect of GeO(2) and radiation on cell viability. Cells were treated with 0 to 22 mM GeO(2) for 12 h followed by 1 Gy X irradiation. A synergistic cytotoxic effect was observed for the combined treatment with a dose-dependent reduction of cell viability. Complete survival curves showed a 2.3- and 2.75-fold increase in radiosensitivity for 50% cell death in the presence of 5 and 15 mM GeO(2), respectively. The increased radiosensitivity also occurred when GeO(2) was given either 4 h prior to irradiation or immediately after radiation exposure. GeO(2) did not affect the total soluble thiol content or the activities of catalase and glutathione S-transferase. Analysis of the production of reactive oxygen species (ROS) revealed that the combined treatment dramatically increased the synthesis of ROS. Addition of N-acetyl cysteine (NAC, 20 mM) decreased the production of ROS in cells. NAC, however, increased cell viability only slightly after treatment with GeO(2) and radiation. Thus increased production of ROS makes little or no contribution to the observed death. The combination of GeO(2) and X radiation, however, significantly increased the frequency of DNA double-strand breaks (DSBs). Notably, the presence of GeO(2) also reduced the efficiency of DNA repair. We conclude that treatment with GeO(2) followed by X irradiation increases DNA DSBs and cell death.  相似文献   

14.
Radiotherapy of head and neck cancer frequently damages the salivary glands. Prophylactic administration of the muscarinic receptor agonist pilocarpine reduces subsequent radiation damage to the salivary glands in rats, but its effects on tumor cell radiosensitivity and tumor regrowth after irradiation had not been assessed. In the current study, we first tested the effect of pilocarpine on clonogenic cell survival in vitro. No effect of pilocarpine on radiosensitivity was observed in a panel of cell lines either with or without expression of muscarinic receptors. Second, a single dose of pilocarpine known to protect salivary gland tissue from radiation damage was given to rats transplanted with subcutaneously growing rhabdomyosarcomas 1 h prior to irradiation with a single dose of 35 Gy. No alterations in growth delay were detected (26 +/- 2 days for controls compared to 26 +/- 2 days for pilocarpine treatment). Our data indicate that pilocarpine pretreatment, which has been shown previously to protect salivary glands from radiation, does not protect tumor cells or tumors. Use of this drug therefore may lead to therapeutic gain in the treatment of head and neck cancer.  相似文献   

15.
Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions.  相似文献   

16.
The impact of intracellular glutathione depletion on chromosome damage induced by X irradiation under aerobic conditions was investigated in two different cell lines, Ehrlich ascites tumor cells (EATC) and Chinese hamster ovary cells (CHO-K1). Thiol-depleted cell cultures in plateau phase were obtained by prolonged incubation in growth medium containing DL-buthionine-SR-sulfoximine (BSO), a specific inhibitor of gamma-glutamyl-cysteine synthetase. Cells were then assayed using the procedures of G. L. Ellmann (Arch. Biochem. Biophys. 82, 70-77 (1959)), F. Tietze (Anal. Biochem. 27, 502-522 (1969)), and J. Sedlack and R.H. Lindsay (Anal. Biochem. 25, 192-205 (1968)) for non-protein bound SH (NPSH), glutathione (GSH), and total SH (TSH). In both cell lines GSH was reduced to less than 10% of controls at higher BSO concentrations around 1 mM, whereas TSH and NPSH were affected to only 40-60%. In EATC pretreated with up to 1 mM BSO for 72 h, increased levels of spontaneously occurring micronuclei were found. At BSO concentrations above 200 microM, both cell lines showed a potentiation of chromosome lesions scored as micronuclei and induced under aerobic X irradiation when liquid holding recovery in the original nutrient-depleted medium was performed; the extent of chromosome damage eventually reached that which could be obtained by application of beta-arabinofuranosyladenine (beta-araA), known to inhibit DNA repair processes by blocking DNA polymerases. It is therefore suggested that GSH depletion causes impairment of repair of lesions leading to chromosome deletions and subsequently to micronuclei. In contrast to CHO cell cultures, EATC showed a reversion of the potentiation effect as indicated by a decrease in the micronucleus content during prolonged incubation in the presence of BSO in the millimolar range. This effect could not be correlated to the remaining GSH content of less than 10% but may be due to some accumulation of unknown NPSH components. Since addition of L-cysteine to EATC cultures pretreated with BSO decreased the micronucleus content, cysteine/cystine or a related thiol within the NPSH fraction may be involved in the reestablishment of repair. Thus at least in one cell line, a rather complex response to BSO administration indicated that not only GSH but also other thiols may determine the level of chromosome damage after liquid holding recovery.  相似文献   

17.
A study was made of the clonogenic capacity of cells from central and peripheral zones of NKLy solid tumors of mice after heating up to 42 degrees C and after the combined effect of hyperthermia and local irradiation of the tumor. Hyperthermia markedly increased the rate of radiation death of cell populations from central tumor zones, having low oxygen tension, and had no effect on radiosensitivity of cells from peripheral well oxygenated zones. In heated tumors, the repair of potentially lethal radiation damages to cells from the peripheral zones was inhibited while in conventional irradiation conditions these damages could be restored.  相似文献   

18.
Summary The Escherichia coli auxotroph K1060 has been grown in a medium supplemented with either oleic acid (18 : 1) or linolenic acid (18 : 3) and its radiosensitivity and thermosensitivity established using bacterial cell survival as the assay system. No difference in radiosensitivity was observed when oleic and linolenic grown cells were exposed to-radiation at room temperature. When heated at 49° C linolenic grown cells were more sensitive than oleic grown cells.To investigate whether soluble -SH compounds, e.g., glutathione (GSH), were critical in protecting cells against radiation or heat, studies were performed using cells depleted of -SH by incubation with diethylmaleate (DEM). After reduction of water-soluble non-protein thiol compounds to 25% (10 mM DEM treatment) of control value, no major changes in radiosensitivity under oxic conditions were found. Radioresistance increased slightly when irradiation was performed under hypoxic conditions. Thermoresistance was clearly stimulated after DEM treatments between 1 and 10 mM DEM.The main conclusion of these experiments is that lowering the cellular level of reduced glutathione may not generally be correlated with a higher radio- and thermosensitivity.  相似文献   

19.
The underlying physiological mechanisms leading to tumor reoxygenation after irradiation have elicited considerable interest, but they remain somewhat unclear. The current study was undertaken to determine the effects of a single dose of 10 Gy gamma radiation on both tumor pathophysiology and radiobiologically hypoxic fraction. Immunohistochemical staining and perfusion markers were used to quantify tumor vasculature, uptake of the hypoxia marker EF5 to assess the distribution of hypoxia, and intravascular HbO(2) measurements to determine oxygen availability. Tumor radiosensitivity was measured by a clonogenic assay. At 24 h postirradiation, oxygen availability increased, perfused vessel numbers decreased, EF5 uptake decreased, and the radiobiologically hypoxic fraction was unchanged. Together, these results demonstrate that tumor hypoxia develops at an increased distance from perfused blood vessels after irradiation, suggesting a decrease in oxygen consumption at 24 h. By 72 h postirradiation, all physiological parameters had returned to the levels in volume-matched, nonirradiated controls. These studies clearly show that single measures of either tumor oxygenation or vascular structure are inadequate for assessing the effects of radiation on tumor clonogenicity. Although such direct measurements have previously proven valuable in predicting tumor response to therapy or oxygen manipulation, a combination of parameters is required to adequately describe the mechanisms underlying these changes after irradiation.  相似文献   

20.
Heavy-ion irradiation induces a higher frequency of DNA double strand breaks (DSBs) which must be properly repaired. Critical shortening of telomeres can trigger DNA damage responses such as DSBs. Telomeres are very sensitive to oxidative stress such as ionizing radiation. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the central component in the non-homologous end joining (NHEJ) repair complex and participates in telomere maintenance. Therefore, it is expected to enhance the cell killing effect of heavy-ion irradiation via DNA-PKcs inhibition. To test this hypothesis, cellular radiosensitivity was measured by the clonal genetic assay. DNA damage repair was relatively quantified by long PCR. Apoptosis was quantified by flow-cytometric analysis of annexin V/PI double staining, and senescence was analyzed by galactosidase activity. Telomere length was semi-quantified by real-time PCR. P53 and p21 expression was determined by western blotting. Our data demonstrated that MCF-7 and HeLa cells with DNA-PKcs inhibition were more susceptible to carbon-ion irradiation than Those without DNA-PKcs inhibition. Even though NHEJ was inhibited by the DNA-PKcs specific inhibitor, NU7026, most DNA damage induced by carbon-ion irradiation was repaired within 24 hours after irradiation in both cell lines. However, potential lethal damage repair (PLDR) could not restore cellular inactivation in DNA-PKcs inhibited cells. MCF-7 cells showed extensive senescence and accelerated telomere length reduction, while HeLa cells underwent significant apoptosis after irradiation with NU7026 incubation. In addition, both cell lines with shorter telomere were more susceptible to carbon-ion radiation. Our current data suggested that DNA-PKcs inhibition could enhance cellular sensitivity to carbon-ion radiation via disturbing its functional role in telomere end protection. The combination of DNA-PKcs inhibition and carbon-ion irradiation may be an efficient method of heavy-ion therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号