首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matzkin LM 《Molecular ecology》2005,14(7):2223-2231
Drosophila mojavensis and Drosophila arizonae are species of cactophilic flies that share a recent duplication of the alcohol dehydrogenase (Adh) locus. One paralog (Adh-2) is expressed in adult tissues and the other (Adh-1) in larvae and ovaries. Enzyme activity measurements of the ADH-2 amino acid polymorphism in D. mojavensis suggest that the Fast allozyme allele has a higher activity on 2-propanol than 1-propanol. The Fast allele was found at highest frequency in populations that utilize hosts with high proportions of 2-propanol, while the Slow allele is most frequent in populations that utilize hosts with high proportions of 1-propanol. This suggests that selection for ADH-2 allozyme alleles with higher activity on the most abundant alcohols is occurring in each D. mojavensis population. In the other paralog, ADH-1, significant differences between D. mojavensis and D. arizonae are associated with a previously shown pattern of adaptive protein evolution in D. mojavensis. Examination of protein sequences showed that a large number of amino acid fixations between the paralogs have occurred in catalytic residues. These changes are potentially responsible for the significant difference in substrate specificity between the paralogs. Both functional and sequence variation within and between paralogs suggests that Adh has played an important role in the adaptation of D. mojavensis and D. arizonae to their cactophilic life.  相似文献   

2.
3.
4.
Populations of Drosophila mojavensis from the deserts of the Baja California peninsula and mainland Mexico utilize different cactus hosts with different alcohol contents. The enzyme alcohol dehydrogenase (ADH) has been proposed to play an important role in the adaptation of Drosophila species to their environment. This study investigates the role of ADH in the adaptation of the cactophilic D. mojavensis to its cactus host. In D. mojavensis and its sibling species, D. arizonae, the Adh gene has duplicated, giving rise to a larval/ovarian form (Adh-1) and an adult form (Adh-2). Studies of sequence variation presented here indicate that the Adh paralogs have followed different evolutionary trajectories. Adh-1 exhibits an excess of fixed amino acid replacements, suggesting adaptive evolution, which could have been a result of several host shifts that occurred during the divergence of D. mojavensis. A 17-bp intron haplotype polymorphism segregates in Adh-2 and has markedly different frequencies in the Baja and mainland populations. The presence of the intron polymorphism suggests possible selection for the maintenance of pre-mRNA structure. Finally, this study supports the proposed Baja California origination of D. mojavensis and subsequent colonization of the mainland accompanied by a host shift.  相似文献   

5.
Matzkin LM  Eanes WF 《Genetics》2003,163(1):181-194
This study focuses on the population genetics of alcohol dehydrogenase (Adh) in cactophilic Drosophila. Drosophila mojavensis and D. arizonae utilize cactus hosts, and each host contains a characteristic mixture of alcohol compounds. In these Drosophila species there are two functional Adh loci, an adult form (Adh-2) and a larval and ovarian form (Adh-1). Overall, the greater level of variation segregating in D. arizonae than in D. mojavensis suggests a larger population size for D. arizonae. There are markedly different patterns of variation between the paralogs across both species. A 16-bp intron haplotype segregates in both species at Adh-2, apparently the product of an ancient gene conversion event between the paralogs, which suggests that there is selection for the maintenance of the intron structure possibly for the maintenance of pre-mRNA structure. We observe a pattern of variation consistent with adaptive protein evolution in the D. mojavensis lineage at Adh-1, suggesting that the cactus host shift that occurred in the divergence of D. mojavensis from D. arizonae had an effect on the evolution of the larval expressed paralog. Contrary to previous work we estimate a recent time for both the divergence of D. mojavensis and D. arizonae (2.4 +/- 0.7 MY) and the age of the gene duplication (3.95 +/- 0.45 MY).  相似文献   

6.
Members of species of the mulleri and hydei subgroups of the repleta group of Drosophila have duplicate Adh genes. The Adh regions of D. mojavensis, D. mulleri, and D. hydei contain three genes--a pseudogene, Adh-2, and Adh-1--arranged 5' to 3'. To understand the evolution of the triplicate Adh structure, we have cloned and sequenced the Adh locus of D. mettleri. This region consists of a 5' pseudogene and a 3' functional Adh gene. On the basis of the structure and nucleotide sequence comparisons of Adh genes of D. mettleri and other species, we propose that an initial duplication of the ancestral Adh gene generated two Adh genes arranged in tandem. The more 5' Adh gene became a pseudogene, while the more 3' gene remained functional through all the developmental stages. A second duplication of this 3' gene resulted in Adh regions with three genes--a pseudogene, Adh-2, and Adh-1.  相似文献   

7.
Structure and Evolution of the Adh Genes of Drosophila Mojavensis   总被引:7,自引:5,他引:2  
The nucleotide sequence of the Adh region of Drosophila mojavensis has been completed and the region found to contain a pseudogene, Adh-2 and Adh-1 arranged in that order. Comparison of the sequence divergence of these genes to one another and to the Adh region of Drosophila mulleri and other species has allowed the development of a model for the evolution of the duplication of the Adh genes. There have been two major events. An initial duplication of an Adh gene whose dual promoter structure was similar to Drosophila melanogaster, resulted in a species with two Adh genes, one of which may have had only a proximal promoter. A second duplication of this gene generated an Adh region containing three genes. It is proposed that one of these is the ancestral gene having dual promoters, while the other two possess only proximal promoters. Subsequent events have resulted in both a change in the regulation of Adh-2 such that it is expressed as if it had a "distal" type promoter and the mutational inactivation of the most upstream gene resulting in the creation of a pseudogene. The sequence of the D. mojavensis Adh region has also revealed the presence of an element which is composed of juxtaposed inverted imperfectly repeated elements. There is a surprising and not fully explainable strong similarity of the nucleotide sequence of the 5' flanking region of the pseudogene in D. mojavensis and D. mulleri.  相似文献   

8.
9.
Alcohol dehydrogenase (ADH) is expressed in a complex temporal and spatial pattern from tandem promoters (proximal and distal) in Drosophila melanogaster, and from two closely linked genes (Adh-1 and Adh-2) in D. mulleri. The expression patterns of Adh-1 and the proximal promoter, and Adh-2 and the distal promoter are similar, but not identical. We show that the mulleri Adh genes are appropriately expressed when introduced into the melanogaster genome, indicating that the cis- and trans-acting elements which regulate the corresponding promoters are functionally equivalent in the two species. By analyzing the expression of in vitro generated mutants of the mulleri Adh locus, we define at least three regulatory regions of the mulleri Adh genes and show that different control elements mediate the expression of Adh in different tissues.  相似文献   

10.
Drosophila mojavensis and other species of the mulleri subgroup contain a duplicate gene encoding the enzyme alcohol dehydrogenase (ADH). Studies on the genetic relationship of the two genes using electrophoretic variants show them to be closely linked. We have cloned a 13.5-kb fragment of D. mojavensis DNA into the lambda vector, Charon 30. This fragment contains both Adh genes separated by approximately 2 kb of DNA. The clone hybridized to a single position on chromosome 3 in D. mojavensis following in situ hybridization. It is likely that the genes are tandemly arranged in the genome. One of the two genes shows a complexity in its structure that suggests the close linkage of a pseudogene or part of a gene. The structure of the Adh locus in five species of the mulleri subgroup have been compared by constructing restriction maps of genomic DNA. Two of these species D. arizonensis and D. mojavensis express Adh-1 in the ovaries; the others do not. In comparing these species it is evident that there has been one or two insertions into the region between the Adh genes. It is possible that one of these structural changes is related to the change in Adh tissue-specific expression that has occurred during the evolution of these species.  相似文献   

11.
High frequencies of the fast allele of alcohol dehydrogenase-2 (Adh-2F) are found in populations of Drosophila mojavensis that inhabit the Baja California peninsula (race BII) whereas the slow allele (Adh-2S) predominates at most other localities within the species' geographic range. Race BII flies utilize necrotic tissue of pitaya agria cactus (Stenocereus gummosus) which contains high levels of 2-propanol, whereas flies from most other localities utilize different cactus hosts in which 2-propanol levels are low. To test if 2-propanol acts as a selective force on Adh-2 genotype, or whether some other yet undetermined genetic factor is responsible, mature males of D. mojavensis lines derived from the Grand Canyon (race A) and Santa Catalina Island (race C), each with individuals homozygous for Adh-2F and Adh-2S, were exposed to 2-propanol for 24 h and ADH-2 specific activity was then determined on each genotype. Flies from five other localities homozygous for either the fast or slow allele also were examined. Results for all reported races of D. mojavensis were obtained. 2-propanol exposure inhibited ADH-2 specific activity in both genotypes from all localities, but inhibition was significantly less in two populations of race BII flies homozygous for Adh-2F. When F/F and S/S genotypes in flies from the same locality were compared, both genotypes showed high 2-propanol inhibition that was not statistically different, indicating that the F/F genotype alone does not provide a benefit against the inhibitory effects of 2-propanol. ADH-1 activity in female ovaries was inhibited less by 2-propanol than ADH-2. These results do not support the hypothesis that 2-propanol acts as a selective factor favoring the Adh-2F allele.  相似文献   

12.
J A Fischer  T Maniatis 《Cell》1988,53(3):451-461
Drosophila alcohol dehydrogenase (Adh) genes are expressed in the fat body and in species-specific sets of other tissues during larval and adult development. The Drosophila mulleri Adh-1 gene is expressed in the larval fat body and in three other larval tissues. In this paper, we show that Adh-1 expression in multiple cell types is the result of synergistic interactions between fat body-specific enhancers and a specific Adh-1 promoter element.  相似文献   

13.
Roose ML  Gottlieb LD 《Genetics》1980,95(1):171-186
Study of the biochemical genetics of alcohol dehydrogenase (ADH) in the annual plant Stephanomeria exigua (Compositae) revealed that the isozymes are specified by a small family of tightly linked structural genes. One set of ADH isozymes (ADH-1) was induced in roots by flooding, and was also expressed in thickened unflooded tap roots, stems, ovaries and seeds. As in other plants, the enzymes are dimeric and form homo- and heterodimers. An electrophoretic survey of ADH-1 phenotypes in two natural populations revealed seven different ADH-1 homodimers in various phenotypes having one to eight enzyme bands. Genetic analysis of segregations from crosses involving 59 plants showed that the ADH-1 isozymes are inherited as a single Mendelian unit, Adh1. Adh1 is polymorphic for forms that specify one, two, or three different ADH-1 subunits (which combine to form homo- and heterodimers), and are expressed co-dominantly in all genotypic combinations. Staining intensity of enzymes extracted from various homozygous and heterozygous plants indicated that the different subunit types specified by Adh1 are produced in approximately equal amounts. These observations suggest that Adh1 is a compound locus consisting of one to several tightly linked (0 recombinants among 579 testcross progeny), coordinately expressed structural genes. The genes in the two triplications also occur in various duplicate complexes and thus could have originated via unequal crossing over. The ADH-2 isozyme found in pollen and seeds is apparently specified by a different gene, Adh2. Adh1 and Adh2 are tightly linked (0 recombinants among 81 testcross progeny).  相似文献   

14.
Subjecting tomato seedlings to anaerobic conditions results in expression of a previously undescribed Adh gene, Adh-2. Induction profiles were similar for all tissues, including roots, hypocotyls, cotyledons, and true leaves. In sharp contrast to ADH-1, ADH-2 showed no induction under anaerobic stress. The only time ADH-2 activity was expressed (under noninduced conditions) was during the early stages of embryogenesis. By late embryogenesis, ADH-2 activity approached a zero level, concomitant with a sharp rise in ADH-1 activity, which is found in the cotyledons of quiescent embryo. Despite striking differences in the regulation of these two genes, their homology is demonstrated in the ability of their enzyme subunits to form presumed intergenic heterodimers, which are visible during the transient period of embryogenesis when the polypeptides encoded by both genes are expressed. A multiple point linkage test using isozymic marker genes places the Adh-2 locus on chromosome 6 near Aps-1, whereas Adh-1 resides on chromosome 4.  相似文献   

15.
This study deals with biochemical and metabolic-physiological aspects of the relationship between variation in in vivo alcohol dehydrogenase activity and fitness in larvae homozygous for the alleles Adh71k, AdhF, AdhS, of Drosophila melanogaster, and for the common Adh allele of Drosophila simulans. The Adh genotypes differ in the maximum oxidation rates of propan-2-ol into acetone in vivo. There are smaller differences between the Adh genotypes in rates of ethanol elimination. Rates of accumulation of ethanol in vivo are negatively associated with larval-to-adult survival of the Adh genotypes. The rank order of the maximum rates of the ADHs in elimination of propan-2-ol, as well as ethanol, is ADH-71k greater than ADH-F greater than ADH-S greater than simulans-ADH. The ratio of this maximum rate to ADH quantity reveals the rank order of ADH-S greater than ADH-F greater than ADH-71k greater than simulans-ADH, suggesting a compensation for allozymic efficiency by the ADH quantity in D. melanogaster.Our findings show that natural selection may act on the Adh polymorphism in larvae via differences in rates of alcohol metabolism.  相似文献   

16.
Developmental expression of alcohol dehydrogenases in maize   总被引:1,自引:0,他引:1  
Alcohol dehydrogenase (ADH) in Zea mays exists in five distinct electrophoretic forms (isozymes), ADH-1, ADH-2, ADH-3, ADH-4, and ADH-T. The mode of inheritance of ADH-1 and ADH-2 has been previously reported; preliminary data suggest that ADH-3 is controlled by a different locus than ADH-2; no genetic analysis has yet been made for ADH-4 and ADH-T. Analyses at different stages of ontogenesis and of different organs have shown that the ADH isozyme pattern fluctuates qualitatively and quantitatively during the course of development and differentiation of the maize plant. ADH-T is controlled spatially and temporally in a very strict manner, being present only in extracts from the pericarp of 19- to 40-day-old kernels. ADH-3 and ADH-4 are present in the scutella of mature kernels and during early sporophytic development. ADH-1 and ADH-2 are the most common isozymes in all tissues examined, but ADH-1 is not found in endosperm of mature kernels or during germination. None of the isozymes have been found to be associated with any particulate cellular component at any stage of development. These findings are discussed with respect to differential gene expression, physiology, and cellular metabolism.  相似文献   

17.
The zinc-binding long-chain alcohol dehydrogenases from plants and animals exhibit a considerable level of amino acid sequence conservation. While the functional importance of many of the conserved residues is known, the role of others has not yet been determined. We have identified a naturally occurring Adh-1 allele in the legume Phaseolus acutifolius with several unusual characteristics. Individuals homozygous for this allele, Adh-1CN, possess a single isozyme starch gel electrophoretic pattern suggestive of a null allele, and exhibit ADH enzyme activity levels ca. 60% lower than the standard wild-type Adh-1F line. Interestingly, analysis of Adh-1CN homozygotes on an alternative gel system indicates that Adh-1CN does encode a polypeptide capable of forming functional homo- and heterodimers. However, the levels of ADH activity displayed by these isozymes are far lower than those observed for the corresponding wild type ADH-1F isozymes. Dialysis experiments indicate that isozymes containing the ADH-1CN polypeptide are inactivated by slightly acidic conditions, which may explain the apparent null phenotype on starch gels. Elevated temperatures cause a similar loss of enzyme activity. The deduced amino acid sequences of ADH-1CN and ADH-1F were obtained from their corresponding cDNA clones, and the only significant difference detected between the two is a single amino acid replacement substitution. Residue 144 is occupied by phenylalanine in the ADH-1F polypeptide, whereas serine occupies this position in the ADH-1CN polypeptide. The proximity of residue 144 to the catalytic zinc in the substrate-binding pocket, coupled with the fact that it is integral to a defined hydrophobic core of the ADH polypeptide, may explain the observed disruptive effect that the serine substitution has on both the activity and stability of the ADH-1CN polypeptide. It also provides an explanation for the maintenance of phenylalanine or the structurally similar tyrosine at this residue in Zn-binding long-chain ADHs.  相似文献   

18.
Hanson  A. D.  Brown  A. H. D. 《Biochemical genetics》1984,22(5-6):495-515
Barley (Hordeum vulgare) and its wild progenitor (H. spontaneum) have three loci for alcohol dehydrogenase (EC 1.1.1.1; ADH). The Adh1 locus is constitutively expressed in seed tissues, whereas expression of the loci Adh2 and Adh3 requires anaerobic induction. The Adh3 gene is well expressed in aleurone and embryo tissues kept under N2 for 2–3 days. Using N2-treated embryos, a diverse collection of H. spontaneum was screened in starch gels for electrophoretic variants at the Adh3 locus. Four variants were found: two were conventional mobility variants (Adh3 S, Adh3 V); one was a null variant (Adh3 n); and the fourth (Adh3 I) variant lacked active homodimers and showed reduced heterodimer activity. The 35S-labeled monomers induced under N2 in the lines homozygous for Adh1, Adh2, or Adh3 variants were immunoprecipitated with antiserum raised against maize ADH. Fluorography after separation by SDS-PAGE and by urea-isoelectric focusing indicated that the Adh3 n allele was CRM- and that the Adh3 I gene product was smaller than normal. The Adh1 and Adh3 variants showed independent segregation.  相似文献   

19.
Summary Two NAD-dependent alcohol dehydrogenases ADH-1 and ADH-2, under independent genetic control of genes designated as Adh-1 and Adh-2 located on chromosomes 4A, 4B and 4D, have been reported in aestivum wheat (Hart 1980). Only ADH-1 is expressed in developing seeds, dry seeds, pollen and germinating seedlings. ADH-2 can be induced in seedling roots or shoots under conditions of partial anaerobiosis or by certain chemicals. Expression of ADH-1 and ADH-2 isoenzymes was investigated in undifferentiated calli from aestivum and durum wheats, rye, triticale and also in in vitro regenerated roots and leaves from aestivum cultures. Wheat callus cultures originating from seed, mature and immature embryos, mesocotyl and root, as well as cultures grown on media containing different supplements did not show any variation in the overall expression of ADH-1 or ADH-2, although differences in the band intensities were observed. The callus isoenzyme pattern was similar to that observed in roots under anaerobic conditions. Both ADH-1 and ADH-2 were expressed in in vitro regenerated roots but were absent in regenerated leaves. Expression of ADH-1 and ADH-2 in wheat calli seems to be related to the type of differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号