首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A primary effect of a novel H-toxin of Clostridium septicum on the hemolysis of rabbit erythrocytes was shown to be the activation of phospholipase A2 (PLA2) associated with rabbit erythrocyte membranes by 20-fold that of controls. Furthermore, the activation of PLA2 induced by the H-toxin was enhanced in the presence of NAD. The H-toxin itself had no PLA2 activity. On the contrary, the H-toxin bound to palmitic acid at a molar proportion of 1:1 and lost its hemolytic activity. The PLA2 was not activated by the H-toxin bound to palmitic acid. These results suggest that activation of the PLA2 is responsible for development of the hemolytic activity of the H-toxin.  相似文献   

2.
1. The hemolysis by serratamic acid, "N-(D-3-hydroxydecanoyl)-L-serine and N-(D-3-hydroxydodecanoyl)-L-serine", was investigated with human and animal erythrocytes using serratamic acid-containing liposomes. 2. The hemolytic activity was found to depend on the incubation temperature and the concentration of the liposomes. 3. The concentration of serratamic acid for 50% hemolysis was 0.17 mM at 37 degrees C for 0.2% human erythrocyte suspension in the liposomes which composed of phosphatidylserine, cholesteryl nervonate and serratamic acid (1:0.50:0.37 by mol). 4. The hemolysis was shown specifically in human, horse and rabbit erythrocytes containing phosphatidylcholine, but not in sheep or bovine erythrocytes lacking phosphatidylcholine. 5. The hemolytic activity was strongly inhibited by the exogenous addition of phosphatidylcholine. It was suggested that the hemolysis by serratamic acid-containing liposomes was specific for phosphatidylcholine-containing erythrocyte membranes.  相似文献   

3.
The kinetics of the hemolysis induced by filipin is of the damage type, indicating the formation of large nonselective perforations of erythrocyte membranes. The process is relatively independent of the ionic composition of the incubation medium, and the differences between the hemolysis induced by filipin in pig and human erythrocytes are not significant. In a sucrose medium, filipin-induced hemolysis is inhibited in humans, whereas it is stimulated in pig erythrocytes. It is suggested that low ionic strength is the reason for the different modifications of complexation of filipin in pig and human erythrocyte membranes in a sucrose medium. The kinetics of the hemolysis induced in pig erythrocytes by amphotericin B and nystatin is of the permeability type, indicating the formation of selective channels in erythrocyte membranes and colloid osmotic hemolysis. The rate of the hemolysis, which is high in a KCl medium, is decreased in all the other media tested (CaCl2, MgCl2, potassium phosphate buffer, K2SO4, sucrose), although there are no changes in the kinetics of hemolysis. The results are interpreted as the formation of highly selective channels at a low concentration of the antibiotics. At increasing concentrations, channels of decreasing selectivity occur. The resistances of pig erythrocytes to amphotericin B and nystatin are lower than those of human erythrocytes.  相似文献   

4.
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.  相似文献   

5.
Tolaasin, a pore‐forming peptide toxin produced by Pseudomonas tolaasii, causes brown blotch disease on cultivated mushrooms. Hemolysis using red blood cells was measured to evaluate the cytotoxicity of tolaasin. To investigate the mechanism of tolaasin‐induced cell disruption, we studied the effect of temperature on the hemolytic process. At 4 °C, poor binding of the tolaasin molecules to the erythrocyte membrane was observed and most of the tolaasin molecules stayed in the solution. However, once tolaasin bound to erythrocytes at 37 °C and the temperature was decreased, complete hemolysis was observed even at 4 °C. These results indicate that tolaasin binding to cell membrane is temperature‐sensitive while tolaasin‐induced membrane disruption is less sensitive to temperature change. The effect of erythrocyte concentration was measured to understand the membrane binding and pore‐forming properties of tolaasin. The percentage of hemolysis measured by both hemoglobin release and cell lysis decreased as erythrocyte concentration increased in the presence of a fixed amount of tolaasin. The result shows that hemolysis is dependent on the amount of tolaasin and multiple binding of tolaasin is required for the hemolysis of a single cell. In analysis of dose‐dependence, the hemolysis was proportional to the tenth power of the amount of tolaasin, implying that tolaasin‐induced hemolysis can be explained by a multi‐hit model. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
The antihemolytic activity of Rooibos and black tea on Japanese quail erythrocytes was studied. Peroxide and hypotonic hemolysis of the red blood cells of quails, either fed with Rooibos tea supplemented food or fed without tea, was performed. Long-term consumption of Rooibos tea did not change the erythrocyte fragility to either peroxide or hypotonia induced hemolysis. However, Rooibos and black teas decreased peroxide induced hemolysis of erythrocytes incubated with each of them, but not hemolysis induced by hypotonic NaCl solution. Stronger inhibition of hemolysis has been obtained when a boiled water extract of Rooibos tea was used for the inhibition. The degree of inhibition was comparable with the effect of ascorbic acid.  相似文献   

7.
Mechanical properties of erythrocyte membranes play an important role in red cell functions. Stability of human erythrocytes under deforming mechanical tensions which occur in the rapidly moving fluid is studied. The activation energy of the mechanical hemolysis determined by the temperature dependence of the hemolysis rate is 55 + 7 kJ/mol. The fragility of erythrocytes rises sharply as the salt concentrations increase. Glutaric dialdehyde forms a certain number of interprotein bonds which increase the fragility of erythrocytes. The mechanical stability of the erythrocyte membrane falls at high (0.5 M) ethanol concentrations. Blood plasma proteins, particularly human serum albumin, have a pronounced stabilizing effect. The hemolysis occurring during the rapid mixing is not probably associated with an osmotic mechanism since high sucrose concentrations do not prevent this process. The mechanical hemolysis depends both on the deforming tension arising in the membrane and on the state of the erythrocyte membrane.  相似文献   

8.
The mechanism of action on rabbit red cells of Treponema hyodysenteriae hemolysin was studied using volume analysis and release of hemoglobin. While fixation of the hemolysin on the erythrocytes is temperature independent, it appears that hemolysis is temperature dependent. The kinetics of hemolysis proceed according to a sigmoid curve characterized by a prelytic lag. The duration of the prelytic lag varies inversely with the quantity of hemolysin but the rate and the maximum value of hemolysis are directly proportional to the quantity of hemolysin. The effect of sucrose and trypan blue on the hemolysin and the red cells suggest that erythrocyte lysis is likely to be induced by the hemolysin in a way different from that known for other hemolytic agents.  相似文献   

9.
Erythrocyte storage may result in cell damage due to an alteration of membrane integrity, which results in potassium efflux and hemolysis. Lidocaine has been shown to protect erythrocytes from oxidative stress by a possible membrane effect. We conducted this study to examine the effects of lidocaine on human erythrocyte storage. Erythrocytes were kept for seven days at 04 degrees C in the absence or in presence of plasma, and of lidocaine at 36.9 and 221.6 microM. Cell damage was assessed by measuring potassium efflux in the supernatant after seven days, and studying potassium efflux and hemolysis induced by oxidative stress. As expected, erythrocyte storage in the presence of plasma was less deleterious. Lidocaine decreased potassium efflux after 7 days' storage. Resistance toward oxidative stress was greater when the erythrocytes had been kept in the presence of plasma. Considering that lidocaine is widely used in various clinical situations, this data may be of clinical relevance.  相似文献   

10.
Tamoxifen (TAM), the antiestrogenic drug most widely prescribed in the chemotherapy of breast cancer, induces changes in normal discoid shape of erythrocytes and hemolytic anemia. This work evaluates the effects of TAM on isolated human erythrocytes, attempting to identify the underlying mechanisms on TAM-induced hemolytic anemia and the involvement of biomembranes in its cytostatic action mechanisms. TAM induces hemolysis of erythrocytes as a function of concentration. The extension of hemolysis is variable with erythrocyte samples, but 12.5 microM TAM induces total hemolysis of all tested suspensions. Despite inducing extensive erythrocyte lysis, TAM does not shift the osmotic fragility curves of erythrocytes. The hemolytic effect of TAM is prevented by low concentrations of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc) (inactivated functional hydroxyl) indicating that TAM-induced hemolysis is not related to oxidative membrane damage. This was further evidenced by absence of oxygen consumption and hemoglobin oxidation both determined in parallel with TAM-induced hemolysis. Furthermore, it was observed that TAM inhibits the peroxidation of human erythrocytes induced by AAPH, thus ruling out TAM-induced cell oxidative stress. Hemolysis caused by TAM was not preceded by the leakage of K(+) from the cells, also excluding a colloid-osmotic type mechanism of hemolysis, according to the effects on osmotic fragility curves. However, TAM induces release of peripheral proteins of membrane-cytoskeleton and cytosol proteins essentially bound to band 3. Either alpha-T or alpha-TAc increases membrane packing and prevents TAM partition into model membranes. These effects suggest that the protection from hemolysis by tocopherols is related to a decreased TAM incorporation in condensed membranes and the structural damage of the erythrocyte membrane is consequently avoided. Therefore, TAM-induced hemolysis results from a structural perturbation of red cell membrane, leading to changes in the framework of the erythrocyte membrane and its cytoskeleton caused by its high partition in the membrane. These defects explain the abnormal erythrocyte shape and decreased mechanical stability promoted by TAM, resulting in hemolytic anemia. Additionally, since membrane leakage is a final stage of cytotoxicity, the disruption of the structural characteristics of biomembranes by TAM may contribute to the multiple mechanisms of its anticancer action.  相似文献   

11.
The stability of rabbit erythrocytes to hemolysis induced by different compounds in the presence or absence of ethanol or acetaldehyde has been analyzed. Ethanol slightly reduced erythrocyte stability against acidic hemolysis only after long-term preincubation, but the effect of ethanol on stability to oxidative hemolysis manifested itself immediately after its addition to the cells. Ethanol decreased both stability of cells to oxidative damage and dispersion of the hemolytic curve. Comparison of the effects of ethanol and acetaldehyde showed that the destabilizing effect of ethanol might be caused by either its direct action or the effect of its metabolites formed during preincubation of ethanol with erythrocytes. Possible mechanisms of ethanol and acetaldehyde effects on erythrocyte stability are discussed.  相似文献   

12.
The incorporation and accumulation of a certain amount of short-chain phosphatidylcholine or lysophosphatidylcholine into lipid bilayers of erythrocyte membranes is the first step causing membrane perturbation in the process of hemolysis. Accumulation of dilauroylglycerophosphocholine into membranes makes human erythrocytes "permeable cells"; Ions such as Na+ or K+ can permeate through the membrane, though large molecules such as hemoglobin can not. The "pore" formation was partially reproduced in liposomes prepared from lipids extracted from human erythrocyte membranes; C12:0PC induced the release of glucose from liposomes but did not significantly induce the release of dextran. It was suggested that the phase boundary between dilauroylglycerophosphocholine and the host membrane bilayer or dilauroylglycerophosphocholine rich domain itself behaves as "pores." Erythrocytes could expand to 1.5 times the original cell volume without any appreciable hemolysis when incubated with C12:0PC at 37 degrees C. The capacity of the erythrocytes to expand was temperature dependent. The capacity may play an important role in the resistance of the cells against lysis. The "permeable cell" stage could be hardly observed when erythrocytes were treated with didecanoylglycerophosphocholine and lysophosphatidylcholine. Perturbation induced by accumulation of didecanoylglycerophosphocholine or lysophosphatidylcholine may cause non specific destruction of membranes rather than formation of a kind of "pore."  相似文献   

13.
The present study was undertaken to elucidate the mechanism of hemolysis induced by ultrasound. Ar or N2O gas was used to distinguish between cavitation with or without free radical formation (hydroxyl radicals and hydrogen atoms). Free radical formation was examined by the method of spin trapping combined with ESR. After sonication of erythrocyte suspensions, several structural and functional parameters of the erythrocyte membrane--hemolysis, membrane fluidity, membrane permeability, and membrane deformability--were examined. Although free radical formation was observed in the erythrocyte suspensions sonicated in the presence of Ar, no free radical formation was observed in the presence of N2O. However, the hemolysis behavior induced by ultrasound was similar in the presence of Ar or N2O. The membrane fluidity, permeability, and deformability of the remaining unlysed erythrocytes after sonication in the presence of Ar or N2O were unchanged and identical to those of the control cells. On the other hand, after gamma irradiation (700 Gy), the hemolysis behavior was quite different from that after sonication, and the membrane properties were significantly changed. These results suggest that hemolysis induced by sonication was due to mechanical shearing stress arising from cavitation, and that the membrane integrity of the remaining erythrocytes after sonication was the same as that of control cells without sonication. The triatomic gas, N2O, may be useful for ultrasonically disrupting cells without accompanying free radical formation.  相似文献   

14.
用化学方法测定了乙酰胆碱脂酶(AchE)活性,阵发性睡眠性血红蛋白尿症(PNH)红细胞远低于正常红细胞。为了进一步研究PNHAchE(—)的红细胞,采用Protein A Sepharose 6MB结合AchE单抗亲和层析法分离出PNHAchE(—)的红细胞。用间接免疫荧光流式细胞术检测,PNH细胞AchE低于正常,而PNHAchE(—)红细胞未能检出AchE。3H-肌醇标记实验证明,正常红细胞膜区带4.1处有较高的放射活性,而PNH红细胞极低,PNHAchE(—)红细胞完全无放射活性。用AchE抗体做免疫印渍实验证明了AchE存在区带4.1部位。DMPC诱导正常和PNH红细胞,检测二者囊泡化的程度,发现PNH病人红细胞远比正常人红细胞易于囊泡化。  相似文献   

15.
The hemolymph of the crab Scylla serrata contains a lectin specific for N-glycolylneuraminic acid. The role of the sialic acid-specific lectin on natural immunity of the crab is studied by using several kinds of mammalian erythrocytes as a pathogen model. A significant correlation is observed between in vivo clearance of exogenous erythrocytes with the extent of erythrocyte agglutination by the lectin. Similarly, another correlation is noticed between the susceptibility of erythrocytes to lectin-dependent hemocytc-mediated hemolysis and the extent of lectin-mediated erythrocyte agglutination. Two hours after administration of the erythrocytes into the hemocoel, induced augmentation of hemagglutinating activity was observed against all erythrocytes, whether agglutinated highly or least by the lectin, suggesting an increase in the circulating lectin. This study documents that “opsonization” of foreign pathogen by the native lectin is an important step in hemocyte recognition, hemolysis and clearance of the pathogen.  相似文献   

16.
Intraerythrocytic survival of the malaria parasite Plasmodium falciparum requires that host cells supply nutrients and dispose of waste products. This solute transport is accomplished by infection-induced new permeability pathways (NPP) in the erythrocyte membrane. Here, whole-cell patch-clamp and hemolysis experiments were performed to define properties of the NPP. Parasitized but not control erythrocytes constitutively expressed two types of anion conductances, differing in voltage dependence and sensitivity to inhibitors. In addition, infected but not control cells hemolyzed in isosmotic sorbitol solution. Both conductances and hemolysis of infected cells were inhibited by reducing agents. Conversely, oxidation induced identical conductances and hemolysis in non-infected erythrocytes. In conclusion, P.falciparum activates endogenous erythrocyte channels by applying oxidative stress to the host cell membrane.  相似文献   

17.
The effects of the incubation temperature and bovine serum albumin on hemolysis induced by short-chain phosphatidylcholine were examined. The rate of hemolysis of human, monkey, rabbit, and rat erythrocytes by dilauroylglycerophosphocholine showed biphasic temperature-dependence: hemolysis was rapid at 5-10 degrees C and above 40 degrees C, but slow at around 25 degrees C. In contrast, the rate of lysis of cow, calf, sheep, pig, cat, and dog erythrocytes did not show biphasic temperature-dependence, but increased progressively with increase in the incubation temperature. Bovine serum albumin increased the hemolysis of human erythrocytes induced by dilauroylglycerophosphocholine or didecanoylglycerophosphocholine: it shortened the lag time of lysis and reduced the amount of phosphatidylcholine required for lysis. A shift-down of the incubation temperature from 40 to below 10 degrees C also shortened the lag time of lysis of human erythrocytes induced by dilauroylglycerophosphocholine and reduced the amount of phosphatidylcholine required for lysis.  相似文献   

18.
19.
Aqueous extracts of the edible mushroom, Pleurotus ostreatus, contain a substance that is lytic in vitro for mammalian erythrocytes. The hemolytic agent, pleurotolysin, was purified to homogeneity and found to be a protein lacking seven of the amino acids commonly found in proteins. In the presence of sodium dodecyl sulfate it exists a monomers of molecular weight 12 050 whereas under non-dissociating conditions it appears to exist as dimers. It is isoelectric at about pH 6.4. The sensitivity of erythrocytes from different animals correlates with sphingomyelin content of the erythrocyte membranes. Sheep erythrocyte membranes inhibit pleurotolysin-induced hemolysis and the inhibition is time and temperature dependent. Ability of membranes to inhibit hemolysis is abolished by prior treatment of membranes with specific phospholipases. Pleurotolysin-induced hemolysis is inhibited by liposomes prepared from cholesterol, dicetyl phosphate and sphingomyelin derived from sheep erythrocytes whereas a variety of other lipid preparations fail to inhibit. It is concluded that sphingomyelin plays a key role in the hemolytic reaction.  相似文献   

20.
《Insect Biochemistry》1991,21(2):113-120
Posterior-midgut homogenate from female stable flies prepared at 12 h after feeding hemolyzed erythrocytes from 6 different mammalian species more readily than homogenate prepared at 22 h. A significant correlation was obtained between the per cent sphingomyelin content of the erythrocyte membrane and the time required for lysis by the 12 h homogenate. Erythrocytes with low sphingomyelin content were more sensitive to lysis than cells with high sphingomyelin. No such correlation exists for hemolysis by 22 h homogenate. Mean corpuscular volume and osmotic fragilities of erythrocytes were not related to hemolysis either by 12 or 22 h homogenate. Determination of phospholipase C and sphingomyelinase activities showed that the hydrolysis rate of phospholipase C in homogenates prepared at 12–14 h was almost twice as much as sphingomyelinase activity. Whereas hydrolysis rates in 22–24 h homogenate were not different and markedly reduced compared to the 12–14 h homogenate. The times required for erythrocyte hemolysis related to the phospholipase C and sphingomyelinase activity profiles suggests that these enzyme activities participate in the in vitro hemolysis of red blood cells. Bovine and human erythrocytes change their biconcave contour into a spiculated spherical shape when they are exposed to midgut homogenate. This shape change is interpreted as a detergent induced modification of the red cell membrane which renders the erythrocytes more vulnerable to hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号