首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rapid integration of biologically relevant information is crucial for the survival of an organism. Most prominently, humans should be biased to attend and respond to looming stimuli that signal approaching danger (e.g. predator) and hence require rapid action. This psychophysics study used binocular rivalry to investigate the perceptual advantage of looming (relative to receding) visual signals (i.e. looming bias) and how this bias can be influenced by concurrent auditory looming/receding stimuli and the statistical structure of the auditory and visual signals.Subjects were dichoptically presented with looming/receding visual stimuli that were paired with looming or receding sounds. The visual signals conformed to two different statistical structures: (1) a ‘simple’ random-dot kinematogram showing a starfield and (2) a “naturalistic” visual Shepard stimulus. Likewise, the looming/receding sound was (1) a simple amplitude- and frequency-modulated (AM-FM) tone or (2) a complex Shepard tone. Our results show that the perceptual looming bias (i.e. the increase in dominance times for looming versus receding percepts) is amplified by looming sounds, yet reduced and even converted into a receding bias by receding sounds. Moreover, the influence of looming/receding sounds on the visual looming bias depends on the statistical structure of both the visual and auditory signals. It is enhanced when audiovisual signals are Shepard stimuli.In conclusion, visual perception prioritizes processing of biologically significant looming stimuli especially when paired with looming auditory signals. Critically, these audiovisual interactions are amplified for statistically complex signals that are more naturalistic and known to engage neural processing at multiple levels of the cortical hierarchy.  相似文献   

2.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

3.
Preliminary results of a disjunctive procedure developed to ascertain the relative attractiveness for domestic chicks of auditory and visual stimuli are promising. A detailed account of the procedure and initial results is presented. Seventy-two Canadian Athens random bred chicks were tested at 24 or 36 h posthatch. A repetitive tone (4 per sec, 50 msec duration, 500 Hz) served as the auditory stimulus, and a flickering light (3.5 flashes per sec, 0.8 foot candle) served as the visual stimulus. An age-dependent change in the attractiveness of auditory and visual stimuli obtained with the disjunctive procedure. No change in stimulus preference obtained when the stimuli were presented individually.  相似文献   

4.
Because chickens are highly social animals, live conspecifics are often used to provide an incentive or goal in studies of gait, sociality or fear that require the bird to traverse a runway. However, the variable behaviour of the stimulus birds can influence the approach/avoidance responses of the test birds and thereby confound the results. Because chickens modify their behaviour readily and appropriately to a variety of video images, including social stimuli, we asked if video playback might represent easily controllable and standardized alternatives to live birds. Female ISA Brown chicks were housed in groups of eight and then exposed to a blank illuminated television for 10 min per day from 2 to 7 days of age. At 8 or 9 days of age they were placed individually in the start box of a 1.6 m long runway and we recorded their responses to a monitor displaying selected video images that was situated in the goal box at the opposite end of the runway. In Experiment 1 chicks approached a monitor playing the video image and soundtrack of feeding chicks significantly sooner than one of a goal box with the food dish and background noise. In Experiment 2, chicks were exposed to the same video of feeding conspecifics with or without the associated sounds or to a video of the goal box with or without the chick soundtrack. Both the videos of other chicks elicited faster approach than did those of the goal box and the sound and silent versions were equally attractive. Adding the soundtrack of feeding chicks to the goal-box video failed to increase its attractiveness. The present results suggest that chicks are attracted towards televised images of other chicks. They also indicate that the visual and auditory components of the video stimuli did not exert additive effects and that approach reflected attraction to the visual image. Collectively, our findings suggest that video playback of selected social stimuli, such as feeding conspecifics, could be a valuable tool in tests requiring voluntary locomotion along a predetermined path.  相似文献   

5.
BACKGROUND: Neurons in primary auditory cortex are known to be sensitive to the locations of sounds in space, but the reference frame for this spatial sensitivity has not been investigated. Conventional wisdom holds that the auditory and visual pathways employ different reference frames, with the auditory pathway using a head-centered reference frame and the visual pathway using an eye-centered reference frame. Reconciling these discrepant reference frames is therefore a critical component of multisensory integration. RESULTS: We tested the reference frame of neurons in the auditory cortex of primates trained to fixate visual stimuli at different orbital positions. We found that eye position altered the activity of about one third of the neurons in this region (35 of 113, or 31%). Eye position affected not only the responses to sounds (26 of 113, or 23%), but also the spontaneous activity (14 of 113, or 12%). Such effects were also evident when monkeys moved their eyes freely in the dark. Eye position and sound location interacted to produce a representation for auditory space that was neither head- nor eye-centered in reference frame. CONCLUSIONS: Taken together with emerging results in both visual and other auditory areas, these findings suggest that neurons whose responses reflect complex interactions between stimulus position and eye position set the stage for the eventual convergence of auditory and visual information.  相似文献   

6.
In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG) pattern, “delta-brushes,” in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW) during routine EEG recording. Stimuli consisted of either low-volume technogenic “clicks” near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus (“click” and voice) was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and “click” stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for “click” and voice stimuli: responses to “clicks” became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory), these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex during fetal stages and provide a potential test of functional cortical maturation during fetal development.  相似文献   

7.
How does the human brain extract regularities from its environment? There is evidence that short range or ‘local’ regularities (within seconds) are automatically detected by the brain while long range or ‘global’ regularities (over tens of seconds or more) require conscious awareness. In the present experiment, we asked whether participants'' attention was needed to acquire such auditory regularities, to detect their violation or both. We designed a paradigm in which participants listened to predictable sounds. Subjects could be distracted by a visual task at two moments: when they were first exposed to a regularity or when they detected violations of this regularity. MEG recordings revealed that early brain responses (100–130 ms) to violations of short range regularities were unaffected by visual distraction and driven essentially by local transitional probabilities. Based on global workspace theory and prior results, we expected that visual distraction would eliminate the long range global effect, but unexpectedly, we found the contrary, i.e. late brain responses (300–600 ms) to violations of long range regularities on audio-visual trials but not on auditory only trials. Further analyses showed that, in fact, visual distraction was incomplete and that auditory and visual stimuli interfered in both directions. Our results show that conscious, attentive subjects can learn the long range dependencies present in auditory stimuli even while performing a visual task on synchronous visual stimuli. Furthermore, they acquire a complex regularity and end up making different predictions for the very same stimulus depending on the context (i.e. absence or presence of visual stimuli). These results suggest that while short-range regularity detection is driven by local transitional probabilities between stimuli, the human brain detects and stores long-range regularities in a highly flexible, context dependent manner.  相似文献   

8.
Town SM  McCabe BJ 《PloS one》2011,6(3):e17777
Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus.  相似文献   

9.
This psychophysics study investigated whether prior auditory conditioning influences how a sound interacts with visual perception. In the conditioning phase, subjects were presented with three pure tones ( =  conditioned stimuli, CS) that were paired with positive, negative or neutral unconditioned stimuli. As unconditioned reinforcers we employed pictures (highly pleasant, unpleasant and neutral) or monetary outcomes (+50 euro cents, −50 cents, 0 cents). In the subsequent visual selective attention paradigm, subjects were presented with near-threshold Gabors displayed in their left or right hemifield. Critically, the Gabors were presented in synchrony with one of the conditioned sounds. Subjects discriminated whether the Gabors were presented in their left or right hemifields. Participants determined the location more accurately when the Gabors were presented in synchrony with positive relative to neutral sounds irrespective of reinforcer type. Thus, previously rewarded relative to neutral sounds increased the bottom-up salience of the visual Gabors. Our results are the first demonstration that prior auditory conditioning is a potent mechanism to modulate the effect of sounds on visual perception.  相似文献   

10.
Event-related potentials (ERPs) to environmental sounds were recorded from 15 young control subjects in an auditory recognition memory task. Subjects listened to a continuous string of binaurally presented sounds, 20% of which were presented once and 80% were repeated. Of the repeated sounds, some repeated immediately after the initial presentation (2 sec; short delay repetition) while others repeated after 2–6 intervening sounds (4–12 sec; long delay repetition). Subjects were instructed to indicate whether they had heard the sounds before by pressing a “yes” or “no” button.The initial stimulus presentation and long delay repetition stimuli generated both an N4 component and a prolonged latency P3 component while the short delay repetition stimuli elicited no N4 component and an earlier latency P3 component. Subjects' responses were faster and more accurate for short delay repetition. All stimuli generated a sustained frontal negative component (SFN). These data indicate that auditory recognition memory for environmental sounds may involve two processes. The P3 generated by both short and long delay repetition stimuli may index activation of a neocortical template matching system. The N4 generated by initial stimulus presentations and long delay repetition is proposed to measure additional activation of limbic memory systems at long retention intervals.  相似文献   

11.
Cats were stimulated with tones and with natural sounds selected from the normal acoustic environment of the animal. Neural activity evoked by the natural sounds and tones was recorded in the cochlear nucleus and in the medial geniculate body. The set of biological sounds proved to be effective in influencing neural activity of single cells at both levels in the auditory system. At the level of the cochlear nucleus the response of a neuron evoked by a natural sound stimulus could be understood reasonably well on the basis of the structure of the spectrograms of the natural sounds and the unit's responses to tones. At the level of the medial geniculate body analysis with tones did not provide sufficient information to explain the responses to natural sounds. At this level the use of an ensemble of natural sound stimuli allows the investigation of neural properties, which are not seen by analysis with simple artificial stimuli. Guidelines for the construction of an ensemble of complex natural sound stimuli, based on the ecology and ethology of the animal under investigation are discussed. This stimulus ensemble is defined as the Acoustic Biotope.  相似文献   

12.

Background

We physically interact with external stimuli when they occur within a limited space immediately surrounding the body, i.e., Peripersonal Space (PPS). In the primate brain, specific fronto-parietal areas are responsible for the multisensory representation of PPS, by integrating tactile, visual and auditory information occurring on and near the body. Dynamic stimuli are particularly relevant for PPS representation, as they might refer to potential harms approaching the body. However, behavioural tasks for studying PPS representation with moving stimuli are lacking. Here we propose a new dynamic audio-tactile interaction task in order to assess the extension of PPS in a more functionally and ecologically valid condition.

Methodology/Principal Findings

Participants vocally responded to a tactile stimulus administered at the hand at different delays from the onset of task-irrelevant dynamic sounds which gave the impression of a sound source either approaching or receding from the subject’s hand. Results showed that a moving auditory stimulus speeded up the processing of a tactile stimulus at the hand as long as it was perceived at a limited distance from the hand, that is within the boundaries of PPS representation. The audio-tactile interaction effect was stronger when sounds were approaching compared to when sounds were receding.

Conclusion/Significance

This study provides a new method to dynamically assess PPS representation: The function describing the relationship between tactile processing and the position of sounds in space can be used to estimate the location of PPS boundaries, along a spatial continuum between far and near space, in a valuable and ecologically significant way.  相似文献   

13.
Eye position influences auditory responses in primate inferior colliculus   总被引:9,自引:0,他引:9  
Groh JM  Trause AS  Underhill AM  Clark KR  Inati S 《Neuron》2001,29(2):509-518
We examined the frame of reference of auditory responses in the inferior colliculus in monkeys fixating visual stimuli at different locations. Eye position modulated the level of auditory responses in 33% of the neurons we encountered, but it did not appear to shift their spatial tuning. The effect of eye position on auditory responses was substantial-comparable in magnitude to that of sound location. The eye position signal appeared to interact with the auditory responses in at least a partly multiplicative fashion. We conclude that the representation of sound location in primate IC is distributed and that the frame of reference is intermediate between head- and eye-centered coordinates. The information contained in these neurons appears to be sufficient for later neural stages to calculate the positions of sounds with respect to the eyes.  相似文献   

14.
The usefulness of peeping in indexing attachment to visual and auditory stimuli was confirmed in chicks between 18 and 30 h post-hatch. Greater attractiveness of the auditory stimulus was associated with a more marked initial reduction in peeping after auditory stimulus presentation, suggesting a greater attentional impact, and with greater effectiveness in reducing peeping during repeated stimulus presentations. There was no difference between the two stimuli in effects on peeping before or shortly after the initial approach to the stimuli. Of additional interest was the observation of a sharp rise in peeping immediately preceding the increased activity associated with initial approach. The possible relationship between peeping and arousal was considered.  相似文献   

15.
Tinnitus is the perception of sound in the absence of external stimulus. Currently, the pathophysiology of tinnitus is not fully understood, but recent studies indicate that alterations in the brain involve non-auditory areas, including the prefrontal cortex. In experiment 1, we used a go/no-go paradigm to evaluate the target detection speed and the inhibitory control in tinnitus participants (TP) and control subjects (CS), both in unimodal and bimodal conditions in the auditory and visual modalities. We also tested whether the sound frequency used for target and distractors affected the performance. We observed that TP were slower and made more false alarms than CS in all unimodal auditory conditions. TP were also slower than CS in the bimodal conditions. In addition, when comparing the response times in bimodal and auditory unimodal conditions, the expected gain in bimodal conditions was present in CS, but not in TP when tinnitus-matched frequency sounds were used as targets. In experiment 2, we tested the sensitivity to cross-modal interference in TP during auditory and visual go/no-go tasks where each stimulus was preceded by an irrelevant pre-stimulus in the untested modality (e.g. high frequency auditory pre-stimulus in visual no/no-go condition). We observed that TP had longer response times than CS and made more false alarms in all conditions. In addition, the highest false alarm rate occurred in TP when tinnitus-matched/high frequency sounds were used as pre-stimulus. We conclude that the inhibitory control is altered in TP and that TP are abnormally sensitive to cross-modal interference, reflecting difficulties to ignore irrelevant stimuli. The fact that the strongest interference effect was caused by tinnitus-like auditory stimulation is consistent with the hypothesis according to which such stimulations generate emotional responses that affect cognitive processing in TP. We postulate that executive functions deficits play a key-role in the perception and maintenance of tinnitus.  相似文献   

16.
People often coordinate their movement with visual and auditory environmental rhythms. Previous research showed better performances when coordinating with auditory compared to visual stimuli, and with bimodal compared to unimodal stimuli. However, these results have been demonstrated with discrete rhythms and it is possible that such effects depend on the continuity of the stimulus rhythms (i.e., whether they are discrete or continuous). The aim of the current study was to investigate the influence of the continuity of visual and auditory rhythms on sensorimotor coordination. We examined the dynamics of synchronized oscillations of a wrist pendulum with auditory and visual rhythms at different frequencies, which were either unimodal or bimodal and discrete or continuous. Specifically, the stimuli used were a light flash, a fading light, a short tone and a frequency-modulated tone. The results demonstrate that the continuity of the stimulus rhythms strongly influences visual and auditory motor coordination. Participants'' movement led continuous stimuli and followed discrete stimuli. Asymmetries between the half-cycles of the movement in term of duration and nonlinearity of the trajectory occurred with slower discrete rhythms. Furthermore, the results show that the differences of performance between visual and auditory modalities depend on the continuity of the stimulus rhythms as indicated by movements closer to the instructed coordination for the auditory modality when coordinating with discrete stimuli. The results also indicate that visual and auditory rhythms are integrated together in order to better coordinate irrespective of their continuity, as indicated by less variable coordination closer to the instructed pattern. Generally, the findings have important implications for understanding how we coordinate our movements with visual and auditory environmental rhythms in everyday life.  相似文献   

17.
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.  相似文献   

18.

Background

The duration of sounds can affect the perceived duration of co-occurring visual stimuli. However, it is unclear whether this is limited to amodal processes of duration perception or affects other non-temporal qualities of visual perception.

Methodology/Principal Findings

Here, we tested the hypothesis that visual sensitivity - rather than only the perceived duration of visual stimuli - can be affected by the duration of co-occurring sounds. We found that visual detection sensitivity (d’) for unimodal stimuli was higher for stimuli of longer duration. Crucially, in a cross-modal condition, we replicated previous unimodal findings, observing that visual sensitivity was shaped by the duration of co-occurring sounds. When short visual stimuli (∼24 ms) were accompanied by sounds of matching duration, visual sensitivity was decreased relative to the unimodal visual condition. However, when the same visual stimuli were accompanied by longer auditory stimuli (∼60–96 ms), visual sensitivity was increased relative to the performance for ∼24 ms auditory stimuli. Across participants, this sensitivity enhancement was observed within a critical time window of ∼60–96 ms. Moreover, the amplitude of this effect correlated with visual sensitivity enhancement found for longer lasting visual stimuli across participants.

Conclusions/Significance

Our findings show that the duration of co-occurring sounds affects visual perception; it changes visual sensitivity in a similar way as altering the (actual) duration of the visual stimuli does.  相似文献   

19.
Visually induced plasticity of auditory spatial perception in macaques   总被引:1,自引:0,他引:1  
When experiencing spatially disparate visual and auditory stimuli, a common percept is that the sound originates from the location of the visual stimulus, an illusion known as the ventriloquism effect. This illusion can persist for tens of minutes, a phenomenon termed the ventriloquism aftereffect. The underlying neuronal mechanisms of this rapidly induced plasticity remain unclear; indeed, it remains untested whether similar multimodal interactions occur in other species. We therefore tested whether macaque monkeys experience the ventriloquism aftereffect similar to the way humans do. The ability of two monkeys to determine which side of the midline a sound was presented from was tested before and after a period of 20-60 min in which the monkeys experienced either spatially identical or spatially disparate auditory and visual stimuli. In agreement with human studies, the monkeys did experience a shift in their auditory spatial perception in the direction of the spatially disparate visual stimulus, and the aftereffect did not transfer across sounds that differed in frequency by two octaves. These results show that macaque monkeys experience the ventriloquism aftereffect similar to the way humans do in all tested respects, indicating that these multimodal interactions are a basic phenomenon of the central nervous system.  相似文献   

20.
Althen H  Grimm S  Escera C 《PloS one》2011,6(12):e28522
The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN), an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR) and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN) a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号