首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.  相似文献   

2.
The mitochondrial protein import motor   总被引:2,自引:0,他引:2  
Strub A  Lim JH  Pfanner N  Voos W 《Biological chemistry》2000,381(9-10):943-949
Mitochondrial proteins are synthesized as precursor proteins in the cytosol and are posttranslationally imported into the organelle. A complex system of translocation machineries recognizes and transports the precursor polypeptide across the mitochondrial membranes. Energy for the translocation process is mainly supplied by the mitochondrial membrane potential (deltapsi) and the hydrolysis of ATP. Mitochondrial Hsp70 (mtHsp70) has been identified as the major ATPase driving the membrane transport of the precursor polypeptides into the mitochondrial matrix. Together with the partner proteins Tim44 and Mge1, mtHsp70 forms an import motor complex interacting with the incoming preproteins at the inner face of the inner membrane. This import motor complex drives the movement of the polypeptides in the translocation channel and the unfolding of carboxy-terminal parts of the preproteins on the outside of the outer membrane. Two models of the molecular mechanism of mtHsp70 during polypeptide translocation are discussed. In the 'trapping' model, precursor movement is generated by Brownian movement of the polypeptide chain in the translocation pore. This random movement is made vectorial by the interaction with mtHsp70 in the matrix. The detailed characterization of conditional mutants of the import motor complex provides the basis for an extended model. In this 'pulling' model, the attachment of mtHsp70 at the inner membrane via Tim44 and a conformational change induced by ATP results in the generation of an inward-directed force on the bound precursor polypeptide. This active role of the import motor complex is necessary for the translocation of proteins containing tightly folded domains. We suggest that both mechanisms complement each other to reach a high efficiency of preprotein import.  相似文献   

3.
We have investigated the interactions of two nuclear-encoded preproteins with the chloroplast protein import machinery at three stages in import using a label-transfer crosslinking approach. During energy-independent binding at the outer envelope membrane, preproteins interact with three known components of the outer membrane translocon complex, Toc34, Toc75, and Toc86. Although Toc75 and Toc86 are known to associate with preproteins during import, a role for Toc34 in preprotein binding previously had not been observed. The interaction of Toc34 with preproteins is regulated by the binding, but not hydrolysis of GTP. These data provide the first evidence for a direct role for Toc34 in import, and provide insights into the function of GTP as a regulator of preprotein recognition. Toc75 and Toc86 are the major targets of cross-linking upon insertion of preproteins across the outer envelope membrane, supporting the proposal that both proteins function in translocation at the outer membrane as well as preprotein recognition. The inner membrane proteins, Tic(21) and Tic22, and a previously unidentified protein of 14 kD are the major targets of crosslinking during the late stages in import. These data provide additional support for the roles of these components during protein translocation across the inner membrane. Our results suggest a defined sequence of molecular interactions that result in the transport of nuclear-encoded preproteins from the cytoplasm into the stroma of chloroplasts.  相似文献   

4.
Routing of cytosolically synthesized precursor proteins into chloroplasts is a specific process which involves a multitude of soluble and membrane components. In this review we wil1 focus on early events of the translocation pathway of nuclear coded plastidic precursor proteins and compare import routes for polypeptide of the outer chloroplast envelope to that of internal chloroplast compartments. A number of proteins housed in the chloroplast envelopes have been implied to be involved in the translocation process, but so far a certain function has not been assigned to any of these proteins. The only exception could be an envelope localized hsc 70 homologue which could retain the import competence of a precursor protein in transit into the organelle.  相似文献   

5.
Protein import into chloroplasts   总被引:2,自引:0,他引:2  
Most chloroplastic proteins are encoded in the nucleus, synthesized on cytosolic ribosomes and subsequently imported into the organelle. In general, proteins destined for the chloroplast are synthesized as precursor proteins with a cleavable N-terminal presequence that mediates routing to the inside of the chloroplast. These precursor proteins have to be targeted to the correct organellar membrane surface after their release from the ribosome and furthermore they have to be maintained in a conformation suitable for translocation across the two envelope membranes. Recognition and import of most chloroplastic precursor proteins are accomplished by a jointly used translocation apparatus. Different but complementary studies of several groups converged recently in the identification of the outer envelope proteins OEP86, OEP75, OEP70 (a Hsp 70-related protein), OEP34, and of the inner envelope protein IEP110 as components of this translocation machinery. None of these proteins, except for OEP70, shows any homology to components of other protein translocases. The plastid import machinery thus seems to be an original development in evolution. Following translocation into the organelle, chloroplastic proteins are sorted to their suborganellar destination, i.e., the inner envelope membrane, the thylakoid membrane, and the thylakoid lumen. This structural and evolutionary complexity of chloroplasts is reflected by a variety of routing mechanisms by which proteins reach their final location once inside the organelle. This review will focus on recent advances in the identification of components of the chloroplastic protein import machinery, and new insights into the pathways of inter-and intraorganellar sorting.  相似文献   

6.
The biogenesis of chloroplasts requires the coordinated interplay with the nucleus and the cytoplasm. The majority of chloroplast proteins are encoded by the nuclear genome and must be faithfully and efficiently delivered to the organelle upon completion of translation in the cytosol. This high-fidelity targeting is accomplished by specific chloroplast targeting signal peptides. Several cytoplasmic factors recognise, modify, and bind this targeting sequence, and deliver the preproteins to the chloroplast translocation machinery. The multisubunit translocation complex at the outer envelope contains receptor proteins, a translocation channel, and accessory subunits. Complete import into the stroma utilizes both outer and inner envelope translocons and molecular chaperones in the intermembrane space and in the stroma. The entire import process appears to be regulated by phosphorylation, nucleotide binding, and hydrolysis. Recent evidence indicates that several subunits of the chloroplast import machinery may have evolved from cyanobacterial ancestors.  相似文献   

7.
Soll  J.  Tien  R. 《Plant molecular biology》1998,38(1-2):191-207
Post-translational protein import into chloroplasts follows a common route characterised by the need for nucleoside-triphosphates at various steps and two distinct protein import machineries at the outer and inner envelope membrane, respectively. Several subunits of these complexes have been elucidated. In contrast, protein translocation into the chloroplastic outer envelope uses distinct and various but poorly characterised insertion pathways. A topological framework for single-membrane spanning proteins of the chloroplastic outer envelope is presented.  相似文献   

8.
Travelling of proteins through membranes: translocation into chloroplasts   总被引:9,自引:0,他引:9  
Schleiff E  Soll J 《Planta》2000,211(4):449-456
 Most proteins involved in plastid biogenesis are encoded by the nuclear genome. They are synthesised in the cytosol and have to be transported toward and subsequently translocated into the organelle. This targeting and import process is initiated by a specific chloroplast-targeting signal. The targeting signal of the preprotein is recognised and modified by cytosolic proteins which function in transport toward the chloroplast and in maintaining the import-competent state of the preprotein. The precursor is transferred onto a multi-component complex in the outer envelope of the chloroplasts, which is formed by receptor proteins and the translocation channel. Some proteins, not containing transit sequences, are directly sorted into the outer membrane whereas the majority, containing transit sequences, will be translocated into the stroma. This involves the joint action of a protein complex in the outer envelope, one complex in the inner envelope, and soluble proteins in the intermembrane space and the stroma. The origin of this translocation complex following the endosymbiotic events is an unsolved question. Recent identification of homologous proteins to some members of this machinery in the cyanobacterium Synechocystis PCC6803 gives an initial insight into the origin of the translocation complex. Received: 27 December 1999 / Accepted: 29 March 2000  相似文献   

9.
The translocon at the inner envelope membrane of chloroplasts (Tic) plays a central role in plastid biogenesis by coordinating the sorting of nucleus-encoded preproteins across the inner membrane and coordinating the interactions of preproteins with the processing and folding machineries of the stroma. Despite these activities, the precise roles of known Tic proteins in translocation, sorting, and preprotein maturation have not been defined. In this report, we examine the in vivo function of a major Tic component, Tic110. We demonstrate that Arabidopsis thaliana Tic110 (atTic110) is essential for plastid biogenesis and plant viability. The downregulation of atTic110 expression results in the reduced accumulation of a wide variety of plastid proteins. The expression of dominant negative mutants of atTic110 disrupts assembly of Tic complexes and the translocation of preproteins across the inner envelope membrane. Together, these data suggest that Tic110 plays a general role in the import of nuclear-encoded preproteins as a common component of Tic complexes.  相似文献   

10.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

11.
《Plant science》2001,161(3):379-389
There is broad evidence that an endosymbiotic uptake of a cyanobacterial-type organism was the point of origin for the evolution of chloroplasts. During organelle evolution extensive gene transfer from the symbiont to the host genome occurred, which raises the question of how these gene products, namely proteins, which are still functional in chloroplasts, find their way back ‘home’. Nuclear-encoded proteins enter plastids via a complex import machinery that requires the coordinate interplay of a variety of soluble and membrane-bound factors on the cytosolic site as well as on the stromal side of the chloroplast envelope membranes. We define that the process called ‘import of chloroplast precursor proteins’ begins with the release of the polypeptide from the ribosomes and binding to cytosolic factors, such as a guidance complex, which accompanies (chaperones) proteins to chloroplasts. The translocation across the envelope membranes engages distinct translocation machineries at the outer and the inner envelope membranes. Additionally subsequent sorting events to different subcompartments within the plastids are operated by a number of distinct pathways, all of which seem to involve multiple subunits, which are largely of bacterial (symbiotic) origin. The evolutionary history of proteins mediating the import of chloroplast constituents across the envelope membranes seems more diverse. Since cyanobacteria lack a protein import pathway, it is not surprising that only a few subunits of the chloroplast translocon seem to be of symbiotic origin while others seem to be eukaryotic additions.  相似文献   

12.
Protein import into chloroplasts involves redox-regulated proteins   总被引:13,自引:0,他引:13  
Pre-protein translocation into chloroplasts is accomplished by two distinct translocation machineries in the outer and inner envelope, respectively. We have isolated the translocon at the inner envelope membrane (Tic complex) by blue-native PAGE and describe a new Tic subunit, Tic62. Tic62, together with Tic110 and Tic55, forms a core translocation unit. The N-terminus of Tic62 shows strong homologies to NAD(H) dehydrogenases in eukaryotes and to Ycf39-like proteins present in cyanobacteria and non-green algae. The stromal-facing C-terminus of Tic62 contains a novel, repetitive module that interacts with a ferredoxin-NAD(P)(+) oxidoreductase. Ferredoxin-NAD(P)(+) oxidoreductase catalyses the final electron transfer of oxygenic photosynthesis from ferredoxin to NAD(P). Substrates that interfere with either NAD binding, such as deamino-NAD, or influence the ratio of NAD(P)/NAD(P)H, such as ruthenium hexamine trichloride, modulate the import characteristics of leaf-specific ferredoxin-NAD(P)(+) oxidoreductase isologues differently. We conclude that the Tic complex can regulate protein import into chloroplasts by sensing and reacting to the redox state of the organelle.  相似文献   

13.
Transport of cytoplasmically synthesized proteins into chloroplasts uses an import machinery present in the envelope membranes. To identify the components of this machinery and to begin to examine how these components interact during transport, chemical cross-linking was performed on intact chloroplasts containing precursor proteins trapped at a particular stage of transport by ATP limitation. Large crosslinked complexes were observed using three different reversible homobifunctional cross-linkers. Three outer envelope membrane proteins (OEP86, OEP75, and OEP34) and one inner envelope membrane protein (IEP110), previously reported to be involved in protein import, were identified as components of these complexes. In addition to these membrane proteins, a stromal member of the hsp100 family, ClpC, was also present in the complexes. We propose that ClpC functions as a molecular chaperone, cooperating with other components to accomplish the transport of precursor proteins into chloroplasts. We also propose that each envelope membrane contains distinct translocation complexes and that a portion of these interact to form contact sites even in the absence of precursor proteins.  相似文献   

14.
Energy dependence of protein translocation into chloroplasts   总被引:25,自引:0,他引:25  
The translocation of in vitro synthesized precursor proteins into intact spinach chloroplasts was investigated with respect to its energy requirement. It was demonstrated that MgATP itself, and not a transmembrane electrochemical gradient across the envelope membrane, promotes protein import. By manipulating the external and the stromal level of MgATP, we provided evidence that MgATP energized the protein import not within the chloroplast but at the outside of the envelope membrane. It is postulated that an MgATP-dependent phosphorylation/dephosphorylation cycle at the outer membrane face was involved in the course of protein translocation into the chloroplast.  相似文献   

15.
Cytoplasmically synthesized precursors interact with translocation components in both the outer and inner envelope membranes during transport into chloroplasts. Using co-immunoprecipitation techniques, with antibodies specific to known translocation components, we identified stable interactions between precursor proteins and their associated membrane translocation components in detergent-solubilized chloroplastic membrane fractions. Antibodies specific to the outer envelope translocation components OEP75 and OEP34, the inner envelope translocation component IEP110 and the stromal Hsp100, ClpC, specifically co-immunoprecipitated precursor proteins under limiting ATP conditions, a stage we have called docking. A portion of these same translocation components was co-immunoprecipitated as a complex, and could also be detected by co-sedimentation through a sucrose density gradient. ClpC was observed only in complexes with those precursors utilizing the general import apparatus, and its interaction with precursor-containing translocation complexes was destabilized by ATP. Finally, ClpC was co-immunoprecipitated with a portion of the translocation components of both outer and inner envelope membranes, even in the absence of added precursors. We discuss possible roles for stromal Hsp100 in protein import and mechanisms of precursor binding in chloroplasts.  相似文献   

16.
The essential yeast gene MPI1 encodes a mitochondrial membrane protein that is possibly involved in protein import into the organelle (A. C. Maarse, J. Blom, L. A. Grivell, and M. Meijer, EMBO J. 11:3619-3628, 1992). For this report, we determined the submitochondrial location of the MPI1 gene product and investigated whether it plays a direct role in the translocation of preproteins. By fractionation of mitochondria, the mature protein of 44 kDa was localized to the mitochondrial inner membrane and therefore termed MIM44. Import of the precursor of MIM44 required a membrane potential across the inner membrane and involved proteolytic processing of the precursor. A preprotein in transit across the mitochondrial membranes was cross-linked to MIM44, whereas preproteins arrested on the mitochondrial surface or fully imported proteins were not cross-linked. When preproteins were arrested at two distinct stages of translocation across the inner membrane, only preproteins at an early stage of translocation could be cross-linked to MIM44. Moreover, solubilized MIM44 was found to interact with in vitro-synthesized preproteins. We conclude that MIM44 is a component of the mitochondrial inner membrane import machinery and interacts with preproteins in an early step of translocation.  相似文献   

17.
Biogenesis of mitochondria requires import of several hundreds of different nuclear-encoded preproteins needed for mitochondrial structure and function. Import and sorting of these preproteins is a multistep process facilitated by complex proteinaceous machineries located in the mitochondrial outer and inner membranes. The translocase of the mitochondrial outer membrane, the TOM complex, comprises receptors which specifically recognize mitochondrial preproteins and a protein conducting channel formed by TOM40. The TOM complex is able to insert resident proteins into the outer membrane and to translocate proteins into the intermembrane space. For import of inner membrane or matrix proteins, the TOM complex cooperates with translocases of the inner membrane, the TIM complexes. During the past 30 years, intense research on fungi enabled the identification and mechanistic characterization of a number of different proteins involved in protein translocation. This review focuses on the contributions of the filamentous fungus Neurospora crassa to our current understanding of mitochondrial protein import, with special emphasis on the structure and function of the TOM complex.  相似文献   

18.
Protein translocation across membranes is assisted by translocation machineries present in the membrane targeted by the precursor proteins. Translocon subunits can be functionally divided into receptor proteins warranting the specificity of this machine and a translocation channel. At the outer envelope of chloroplasts two sets of receptor proteins regulate protein translocation facing the cytosol or acting in the intermembrane space. One, Toc64 is a receptor of the translocon at the outer envelope of chloroplasts (Toc complex) with dual function. Toc64 recognizes Hsp90 delivered precursor proteins via a cytosolic exposed domain containing three tetratrico-peptide repeat motifs and as demonstrated in here, Toc64 functions also as a major component of a complex facing the intermembrane space. The latter complex is composed of an Hsp70 localized in the intermembrane space, its interaction partner Toc12, a J-domain containing protein and the intermembrane space protein Tic22. We analyzed the intermembrane space domain of Toc64. This domain is involved in preprotein recognition and association with the Toc-complex independent of the cytosolic domain of the Toc64 receptor. Therefore, Toc64 is involved in preprotein translocation across the outer envelope at both sites of the membrane.  相似文献   

19.
H M Li  T Moore    K Keegstra 《The Plant cell》1991,3(7):709-717
The chloroplastic envelope is composed of two membranes, inner and outer, each with a distinct set of polypeptides. Like proteins in other chloroplastic compartments, most envelope proteins are synthesized in the cytosol and post-translationally imported into chloroplasts. Considerable knowledge has been obtained concerning protein import proteins. We isolated a cDNA clone from pea that encodes a 14-kilodalton outer envelope membrane protein. The precursor form of this protein does not possess a cleavable transit peptide and its import into isolated chloroplasts does not require either ATP or a thermolysin-sensitive component on the chloroplastic surface. These findings, together with similar observations made with a spinach chloroplastic outer membrane protein, led us to propose that proteins destined for the outer membrane of the chloroplastic envelope follow an import pathway distinct from that followed by proteins destined for other chloroplastic compartments.  相似文献   

20.
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号