首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl or anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter.  相似文献   

2.
Members of the ligand-gated ion channel superfamily mediate fast synaptic transmission in the nervous system. In this study, we investigate the molecular determinants and mechanisms of ion permeation and ion charge selectivity in this family of channels by characterizing the single channel conductance and rectification of alpha1 homomeric human glycine receptor channels (GlyRs) containing pore mutations that impart cation selectivity. The A-1'E mutant GlyR and the selectivity double mutant ([SDM], A-1'E, P-2' Delta) GlyR, had mean inward chord conductances (at -60 mV) of 7 pS and mean outward conductances of 11 and 12 pS (60 mV), respectively. This indicates that the mutations have not simply reduced anion permeability, but have replaced the previous anion conductance with a cation one. An additional mutation to neutralize the ring of positive charge at the extracellular mouth of the channel (SDM+R19'A GlyR) made the conductance-voltage relationship linear (14 pS at both 60 and -60 mV). When this external charged ring was made negative (SDM+R19'E GlyR), the inward conductance was further increased (to 22 pS) and now became sensitive to external divalent cations (being 32 pS in their absence). The effects of the mutations to the external ring of charge on conductance and rectification could be fit to a model where only the main external energy barrier height for permeation was changed. Mean outward conductances in the SDM+R19'A and SDM+R19'E GlyRs were increased when internal divalent cations were absent, consistent with the intracellular end of the pore being flanked by fixed negative charges. This supports our hypothesis that the ion charge selectivity mutations have inverted the electrostatic profile of the pore by introducing a negatively charged ring at the putative selectivity filter. These results also further confirm the role of external pore vestibule electrostatics in determining the conductance and rectification properties of the ligand-gated ion channels.  相似文献   

3.
Electrostatics and the ion selectivity of ligand-gated channels.   总被引:2,自引:2,他引:0       下载免费PDF全文
C Adcock  G R Smith    M S Sansom 《Biophysical journal》1998,75(3):1211-1222
The nicotinic acetylcholine receptor (nAChR) is a cation-selective ion channel that opens in response to acetylcholine binding. The related glycine receptor (GlyR) is anion selective. The pore-lining domain of each protein may be modeled as a bundle of five parallel M2 helices. Models of the pore-lining domains of homopentameric nAChR and GlyR have been used in continuum electrostatics calculations to probe the origins of ion selectivity. Calculated pKA values suggest that "rings" of acidic or basic side chains at the mouths of the nAChR or GlyR M2 helix bundles, respectively, may not be fully ionized. In particular, for the nAChR the ring of glutamate side chains at the extracellular mouth of the pore is predicted to be largely protonated at neutral pH, whereas those glutamate side chains in the intracellular and intermediate rings (at the opposite mouth of the pore) are predicted to be fully ionized. Inclusion of the other domains of each protein represented as an irregular cylindrical tube in which the M2 bundles are embedded suggests that both the M2 helices and the extramembrane domains play significant roles in determining ion selectivity.  相似文献   

4.
The postsynaptic glycine receptor (GlyR) is a major inhibitory chloride channel protein in the central nervous system. The affinity-purified receptor contains polypeptides of 48 kDa, 58 kDa, and 93 kDa. The 48-kDa (alpha) and 58 kDa (beta) subunits span the postsynaptic membrane in a pentameric arrangement to form the anion channel of the receptor. The 93-kDa polypeptide is cytoplasmically localized and may have an anchoring function. Molecular cloning revealed that different structural characteristics are shared by the membrane-spanning subunits of the GlyR and those of other ligand-gated ion channel proteins. Developmental regulation of the GlyR is characterized by alterations in antagonist binding, heterogeneity of alpha subunits, and increased levels of the 93-kDa polypeptide. Glycine receptor function can be reconstituted by expression of cloned alpha subunits in heterologous cell systems. Positive charges found at the presumed mouths of the GlyR channel appear to be important determinants of ion selectivity. These data establish the anion-conducting GlyR as a homolog of other ligand-gated ion channel proteins and suggest that the diversity of these channels originates from divergent evolution of a primordial channel protein early in phylogeny.  相似文献   

5.
Significant progresses have been made in the design, synthesis, modeling and in vitro testing of channel-forming peptides derived from the second transmembrane domain of the α-subunit of the glycine receptor (GlyR). The latest designs, including p22 (KKKKP ARVGL GITTV LTMTT QS), are highly soluble in water with minimal aggregation propensity and insert efficiently into cell membranes to form highly conductive ion channels. The last obstacle to a potential lead sequence for channel replacement treatment of CF patients is achieving adequate chloride selectivity. We have performed free energy simulation to analyze the conductance and charge selectivity of M2GlyR-derived synthetic channels. The results reveal that the pentameric p22 pore is non-selective. Moderate barriers for permeation of both K+ and Cl are dominated by the desolvation cost. Despite previous evidence suggesting a potential role of threonine side chains in anion selectivity, the hydroxyl group is not a good surrogate of water for coordinating these ions. We have also tested initial ideas of introducing additional rings of positive changes to various positions along the pore to increase anion selectivity. The results support the feasibility of achieving anion selectivity by modifying the electrostatic properties of the pore, but at the same time suggest that the peptide assembly and pore topology may also be dramatically modified, which could abolish the effects of modified electrostatics on anion selectivity. This was confirmed by subsequent two-electrode voltage clamp measurements showing that none of the tested mono-, di- and tri-Dap substituted sequences was selective. The current study thus highlights the importance of controlling channel topology besides modifying pore electrostatics for achieving anion selectivity. Several strategies are now being explored in our continued efforts to design an anion selective peptide channel with suitable biophysical, physiological and pharmacological properties as a potential treatment modality for channel replacement therapy. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

6.
Ligand-gated ion channel receptors mediate neuronal inhibition or excitation depending on their ion charge selectivity. An investigation into the determinants of ion charge selectivity of the anion-selective alpha1 homomeric glycine receptor (alpha1 glycine receptor [GlyR]) was undertaken using point mutations to residues lining the extra- and intracellular ends of the ion channel. Five mutant GlyRs were studied. A single substitution at the intracellular mouth of the channel (A-1'E GlyR) was sufficient to convert the channels to select cations over anions with P(Cl)/P(Na) = 0.34. This result delimits the selectivity filter and provides evidence that electrostatic interactions between permeating ions and pore residues are a critical factor in ion charge selectivity. The P-2'Delta mutant GlyR retained its anion selectivity (P(Cl)/P(Na) = 3.81), but it was much reduced compared with the wild-type (WT) GlyR (P(Cl)/P(Na) = 27.9). When the A-1'E and the P-2'Delta mutations were combined (selectivity double mutant [SDM] GlyR), the relative cation permeability was enhanced (P(Cl)/P(Na) = 0.13). The SDM GlyR was also Ca(2+) permeable (P(Ca)/P(Na) = 0.29). Neutralizing the extracellular mouth of the SDM GlyR ion channel (SDM+R19'A GlyR) produced a more Ca(2+)-permeable channel (P(Ca)/P(Na) = 0.73), without drastically altering monovalent charge selectivity (P(Cl)/P(Na) = 0.23). The SDM+R19'E GlyR, which introduces a negatively charged ring at the extracellular mouth of the channel, further enhanced Ca(2+) permeability (P(Ca)/P(Na) = 0.92), with little effect on monovalent selectivity (P(Cl)/P(Na) = 0.19). Estimates of the minimum pore diameter of the A-1'E, SDM, SDM+R19'A, and SDM+R19'E GlyRs revealed that these pores are larger than the alpha1 GlyR, with the SDM-based GlyRs being comparable in diameter to the cation-selective nicotinic acetylcholine receptors. This result provides evidence that the diameter of the ion channel is also an important factor in ion charge selectivity.  相似文献   

7.
The GABA type A receptor (GABA(A)R) is a member of the pentameric ligand gated ion channel (pLGIC) family that mediates ionotropic neurotransmission. Residues in the intracellular loop domain (ILD) have recently been shown to define part of the ion permeation pathway in several closely related members of the pentameric ligand gated ion channel family. In this study, we investigated the role the ILD of the GABA(A)R α1 subunit plays in channel function. Deletion of the α1 ILD resulted in a significant increase in GABA EC(50) and maximal current amplitude, suggesting that the ILD must be intact for proper receptor function. To test this hypothesis, we conducted a mutagenic screen of all amino acids harboring ionizable side chains within this domain to investigate the contribution of individual charged residues to ion permeation. Using macroscopic and single channel voltage-clamp recording techniques, we found that mutations within a subdomain of the α1 ILD near M3 altered GABA apparent affinity; interestingly, α1(K312E) exhibited reduced partial agonist efficacy. We introduced point mutations near M4, including α1(K383E) and α1(K384E), that enhanced receptor desensitization. Mutation of 5 charged residues within a 39-residue span contiguous with M4 reduced relative anion permeability of the channel and may represent a weak intracellular selectivity filter. Within this subdomain, the α1(K378E) mutation induced a significant reduction in single channel conductance, consistent with our hypothesis that the GABA(A)R α1 ILD contributes directly to the permeation pathway.  相似文献   

8.
In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg(271) to Lys(276) in the M2-M3 domain of the homomeric alpha1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.  相似文献   

9.
The glycine receptor belongs to the ligand-gated ion channel superfamily. It is a chloride conducting channel composed of four transmembrane domains. It was previously shown that the second transmembrane domain (M2) of the glycine receptor forms an ion conduction pathway throughout lipid bilayers. The amino-acid sequence of the transmembrane segment M2 of the glycine receptor has a high homology to all receptors of the ligand-gated ion channel superfamily. In our report, we have used a synthetic M2 peptide. It was incorporated into a planar membrane of known lipid composition and currents induced by M2 were measured by the Black Lipid Membrane technique. When the planar lipid bilayer was composed of 75% phosphatidylethanolamine and 25% phosphatidylserine, the reversal potential measured in a 150/600 mM KCl (cis/trans) gradient was -19 mV suggesting that the examined >pore was preferential to anions, P(K)/P(Cl) = 0.25. In contrast, when 75% phosphatidylserine and 25% phosphatidylethanolamine was used, the reversal potential was +20 mV and the >pore was preferential to cations, P(K)/P(Cl) = 4.36. Single-channel currents were recorded with two predominant amplitudes corresponding to the main-conductance and sub-conductance states. Both conductance states (about 12 pS and 30 pS) were measured in a symmetric solution of 50 mM KCl. The observed single-channel properties suggest that the selectivity and conductance of the pore formed by the M2 peptide of the glycine receptor depend on the lipid composition of the planar bilayer.  相似文献   

10.
Cheng MH  Cascio M  Coalson RD 《Proteins》2007,68(2):581-593
Homology modeling is used to build initial models of the transmembrane domain of the human alpha1 glycine receptor (GlyR) based on the most recently published refined structure of nAChR (PDB ID: 2BG9). Six preliminary GlyR models are constructed using two different approaches. In one approach, five different homopentamers are built by symmetric assembly of alpha1 GlyR subunits using only one of the five unique chains of nAChR as a template. In a second approach, each nAChR subunit serves as a template for an alpha1 GlyR subunit. All six initial GlyR constructs are then embedded into a hydrated POPC lipid bilayer and subjected to molecular dynamics simulation for at least six nanoseconds. Each model is stable throughout the simulation, and the final models fall into three distinct categories. Homopentameric GlyR bundles using a single alpha nAChR subunit as a template appear to be in an open conformation. Under an applied external potential, permeation of Cl(-) ions is observed within several ns in a channel built on an alpha chain. Model channels built on non-alpha chains have a constriction either near the intracellular mouth or more centrally located in the pore domain, both of which may be narrow enough to close the channel and whose locations correspond to putative gates observed in nicotinicoid receptors. The differences between these three general models suggest that channel closure may be effected by either rotation or tangential tilting of TM2.  相似文献   

11.
Cys-loop receptors constitute a superfamily of ion channels gated by ligands such as acetylcholine, serotonin, glycine, and γ-aminobutyric acid. All of these receptors are thought to share structural characteristics, but due to high sequence variation and limited structure availability, our knowledge about allosteric binding sites is still limited. These sites are frequent targets of anesthetic and alcohol molecules, and are of high pharmacological importance. We used molecular simulations to study ethanol binding and equilibrium exchange for the homomeric α1 glycine receptor (GlyRα1), modeled on the structure of the Gloeobacter violaceus pentameric ligand-gated channel. Ethanol has a well-known potentiating effect and can be used in high concentrations. By performing two microsecond-scale simulations of GlyR with/without ethanol, we were able to observe spontaneous binding in cavities and equilibrium ligand exchange. Of interest, it appears that there are ethanol-binding sites both between and within the GlyR transmembrane subunits, with the intersubunit site having the highest occupancy and slowest exchange (∼200 ns). This model site involves several residues that were previously identified via mutations as being crucial for potentiation. Finally, ethanol appears to stabilize the GlyR model built on a presumably open form of the ligand-gated channel. This stabilization could help explain the effects of allosteric ligand binding in Cys-loop receptors.  相似文献   

12.
We have developed a homology model of the GABA(A) receptor, using the subunit combination of alpha1beta2gamma2, the most prevalent type in the mammalian brain. The model is produced in two parts: the membrane-embedded channel domain and the extracellular N-terminal domain. The pentameric transmembrane domain model is built by modeling each subunit by homology with the equivalent subunit of the heteropentameric acetylcholine receptor transmembrane domain. This segment is then joined with the extracellular domain built by homology with the acetylcholine binding protein. The all-atom model forms a wide extracellular vestibule that is connected to an oval chamber near the external surface of the membrane. A narrow, cylindrical transmembrane channel links the outer segment of the pore to a shallow intracellular vestibule. The physiological properties of the model so constructed are examined using electrostatic calculations and Brownian dynamics simulations. A deep energy well of approximately 80 kT accommodates three Cl(-) ions in the narrow transmembrane channel and seven Cl(-) ions in the external vestibule. Inward permeation takes place when one of the ions queued in the external vestibule enters the narrow segment and ejects the innermost ion. The model, when incorporated into Brownian dynamics, reproduces key experimental features, such as the single-channel current-voltage-concentration profiles. Finally, we simulate the gamma2 K289M epilepsy inducing mutation and examine Cl(-) ion permeation through the mutant receptor.  相似文献   

13.
Synthetic channel‐forming peptides that can restore chloride conductance across epithelial membranes could provide a novel treatment of channelopathies such as cystic fibrosis. Among a series of 22‐residue peptides derived from the second transmembrane segment of the glycine receptor α1‐subunit (M2GlyR), p22‐S22W (KKKKP ARVGL GITTV LTMTT QW) is particularly promising with robust membrane insertion and assembly. The concentration to reach one‐half maximal short circuit current is reduced to 45 ± 6 μM from that of 210 ± 70 μM of peptide p22 (KKKKP ARVGL GITTV LTMTT QS). However, this is accompanied with nearly 50% reduction in conductance. Toward obtaining a molecular level understanding of the channel activities, we combine information from solution NMR, existing biophysical data, and molecular modeling to construct atomistic models of the putative pentameric channels of p22 and p22‐S22W. Simulations in membrane bilayers demonstrate that these structural models, even though highly flexible, are stable and remain adequately open for ion conductance. The membrane‐anchoring tryptophan residues not only rigidify the whole channel, suggesting increased stability, but also lead to global changes in the pore profile. Specifically, the p22‐S22W pore has a smaller opening on average, consistent with lower measured conductance. Direct observation of several incidences of chloride transport suggests several qualitative features of how these channels might selectively conduct anions. The current study thus helps to rationalize the functional consequences of introducing a single C‐terminal tryptophan. Availability of these structural models also paves the way for future work to rationally modify and improve M2GlyR‐derived peptides toward potential peptide‐based channel replacement therapy. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem of vertebrates. Glycine is accumulated into synaptic vesicles by a proton-coupled transport system and released to the synaptic cleft after depolarization of the presynaptic terminal. The inhibitory action of glycine is mediated by pentameric glycine receptors (GlyR) that belong to the ligand-gated ion channel superfamily. The synaptic action of glycine is terminated by two sodium- and chloride-coupled transporters, GLYT1 and GLYT2, located in the glial plasma membrane and in the presynaptic terminals, respectively. Dysfunction of inhibitory glycinergic neurotransmission is associated with several forms of inherited mammalian myoclonus. In addition, glycine could participate in excitatory neurotransmission by modulating the activity of the NMDA subtype of glutamate receptor. In this article, we discuss recent progress in our understanding of the molecular mechanisms that underlie the physiology and pathology of glycinergic neurotransmission.  相似文献   

15.
The substituted cysteine accessibility method was used to probe the surface exposure of a pore-lining threonine residue (T6') common to both the glycine receptor (GlyR) and gamma-aminobutyric acid, type A receptor (GABA(A)R) chloride channels. This residue lies close to the channel activation gate, the ionic selectivity filter, and the main pore blocker binding site. Despite their high amino acid sequence homologies and common role in conducting chloride ions, recent studies have suggested that the GlyRs and GABA(A)Rs have divergent open state pore structures at the 6' position. When both the human alpha1(T6'C) homomeric GlyR and the rat alpha1(T6'C)beta1(T6'C) heteromeric GABA(A)R were expressed in human embryonic kidney 293 cells, their 6' residue surface accessibilities differed significantly in the closed state. However, when a soluble cysteine-modifying compound was applied in the presence of saturating agonist concentrations, both receptors were locked into the open state. This action was not induced by oxidizing agents in either receptor. These results provide evidence for a conserved pore opening mechanism in anion-selective members of the ligand-gated ion channel family. The results also indicate that the GABA(A)R pore structure at the 6' level may vary between different expression systems.  相似文献   

16.
Cascio M 《Biopolymers》2002,66(5):359-368
The members of the superfamily of nicotinicoid receptors, sometimes referred to as the ligand-gated ion channel superfamily (LGICS), are essential mediators in the propagation of electrical signals between cells at neuronal and neuromuscular synapses. Given the significant sequence and proposed topological similarities between family members, the structural architecture of any one of these neuroreceptors is believed to be archetypic for the family of ligand-gated channels. We have focused our biophysical studies on the glycine receptor (GlyR) since homomeric expression of just the alpha1 chain of the receptor is sufficient to reconstitute native-like activity when expressed in heterologous cells, and we have successfully overexpressed and purified relatively large quantities of this receptor. Our CD data suggests that the historical four transmembrane helix topology model for nicotinicoid receptors may be erroneous. Proteolytic studies as well as chemical modification studies coupled with mass spectroscopy (MS) have provided additional evidence that this model may be inappropriate. While we suggest a novel topological model for the superfamily of nicotinicoid receptors, the absence of high resolution data for the transmembrane regions of these ion channels precludes further refinement of this model. In addition, we observe structural changes in the recombinant alpha1 GlyR as a function of bilayer composition, suggesting that these receptors may be dynamically modulated by cellular control over the properties of the plasma membrane.  相似文献   

17.
Restoration of chloride conductance via the introduction of an anion selective pore, formed by a channel-forming peptide, has been hypothesized as a novel treatment modality for patients with cystic fibrosis (CF). Delivery of these peptide sequences to airway cells from an aqueous environment in the absence of organic solvents is paramount. New highly soluble COOH- and NH(2)-terminal truncated peptides, derived from the second transmembrane segment of the glycine receptor alpha-subunit (M2GlyR), were generated, with decreasing numbers of amino acid residues. NH(2)-terminal lysyl-adducted truncated peptides with lengths of 22, 25, and 27 amino acid residues are equally able to stimulate short circuit current (I(SC)). Peptides with as few as 16 amino acid residues are able to stimulate I(SC), although to a lesser degree. In contrast, COOH-terminal truncated peptides show greatly reduced induced I(SC) values for all peptides fewer than 27 residues in length and show no measurable activity for peptides fewer than 21 residues in length. CD spectra for both the NH(2)- and COOH-truncated peptides have random structure in aqueous solution, and those sequences that stimulated the highest maximal I(SC) are predominantly helical in 40% trifluoroethanol. Peptides with a decreased propensity to form helical structures in TFE also failed to stimulate I(SC). Palindromic peptide sequences based on both the NH(2)- and COOH-terminal halves of M2GlyR were synthesized to test roles of the COOH- and NH(2)-terminal halves of the molecule in solution aggregation and channel forming ability. On the basis of the study presented here, there are distinct, nonoverlapping regions of the M2GlyR sequence that define solution aggregation and membrane channel assembly. Peptides that eliminate solution aggregation with complete retention of channel forming activity were generated.  相似文献   

18.
The inhibitory glycine receptor (GlyR) of rat spinal cord contains an intrinsic transmembrane channel mediating agonist-gated anion flux. Here, synthetic peptides modelled after the predicted transmembrane domains M2 and M4 of its ligand-binding subunit were incorporated into lipid vesicle membranes and black lipid bilayers to analyze their channel forming capabilities. Both types of peptides prohibited the establishment of, or dissipated, preexisting transmembrane potentials in the vesicle system. Incorporation of peptide M2 into the black lipid bilayer elicited randomly gated single channel events with various conductance states and life-times. Peptide M4 increased the conductance of the bilayer without producing single channels. Exchange of the terminal arginine residues of peptide M2 by glutamate resulted in a significant shift towards cation selectivity of the respective channels as compared to peptide M2. In conclusion, the peptide channels observed differed significantly from native GlyR in both conductivity and ion-selectivity indicating that individual synthetic transmembrane segments are not sufficient to mimic a channel protein composed of subunits with multiple transmembrane segments.  相似文献   

19.
The functional role of ion channels, which allow counterion permeation, depends critically on their relative anion-cation relative selectivity. From whole-cell patch clamp reversal potential measurements under dilution potential conditions, we have already shown that anion-cation permeabilities of anion-selective wild-type (WT) and mutant (with larger pore diameter) glycine receptor (GlyR) channels in the presence of Li+, Na+ and Cs+ counterions, were inversely correlated with the equivalent hydration diameter of the counterion, with chloride-cation permeability increasing as counterion equivalent hydration diameter increased with respect to the channel minimum pore diameter. Corrected for liquid junction potentials (LJPs; using ion activities), the previous chloride-cation permeabilities for the alkali cations were 23.4 (Li+), 10.9 (Na+) and 5.0 (Cs+) for the smaller WT channel. Further analysis to incorporate an initial offset potential correction, to fully allow for slight differences between internal cell composition and external control salt solution, changed the above permeability ratios to 30.6 (Li+), 11.8 (Na+) and 5.0 (Cs+), adding enhanced support for the inverse correlation between anion-to-counterion permeability ratio and equivalent hydrated counterion diameter relative to channel pore diameter (erroneously ignoring LJPs reduces each permeability ratio to about 4). Also, new direct measurements of LJPs (for NaCl and LiCl salt dilutions) using a 3M KCl-agar reference salt bridge (with freshly-cut end for each solution composition change) have shown excellent agreement with calculated LJPs (using ion activities), validating calculated LJP values. We continue to suggest that counterion cations permeate with chloride ions as neutral pairs.  相似文献   

20.
The viral protein U (Vpu) encoded by HIV-1 has been shown to assist in the detachment of virion particles from infected cells. Vpu forms cation-specific ion channels in host cells, and has been proposed as a potential drug target. An understanding of the mechanism of ion transport through Vpu is desirable, but remains limited because of the unavailability of an experimental structure of the channel. Using a structure of the pentameric form of Vpu – modeled and validated based on available experimental data – umbrella sampling molecular dynamics simulations (cumulative simulation time of more than 0.4 µs) were employed to elucidate the energetics and the molecular mechanism of ion transport in Vpu. Free energy profiles corresponding to the permeation of Na+ and K+ were found to be similar to each other indicating lack of ion selection, consistent with previous experimental studies. The Ser23 residue is shown to enhance ion transport via two mechanisms: creating a weak binding site, and increasing the effective hydrophilic length of the channel, both of which have previously been hypothesized in experiments. A two-dimensional free energy landscape has been computed to model multiple ion permeation, based on which a mechanism for ion conduction is proposed. It is shown that only one ion can pass through the channel at a time. This, along with a stretch of hydrophobic residues in the transmembrane domain of Vpu, explains the slow kinetics of ion conduction. The results are consistent with previous conductance studies that showed Vpu to be a weakly conducting ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号