首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the major cytokines present in inflammatory lesions interleukin-1 (IL-1), tumor necrosis factor alpha (TNF alpha) and interleukin-6 (IL-6) share many biological activities. Since IL-1 alpha, IL-1 beta and TNF alpha have been previously demonstrated to play an important role in connective tissue destruction by stimulating the production of prostaglandin E2 (PGE2) and collagenase, these functions were investigated in the presence or absence of natural human IL-6 (nhIL-6) or recombinant human IL-6 (rhIL-6). IL-6 was found 1 degree to stimulate immunoglobulin A production by the CESS B cell line up to 19 fold without being affected by the presence of IL-1 beta and 2 degrees to stimulate murine thymocytes proliferation up to 2-4 fold, with an increase up to 60-fold in costimulation with either IL-1 alpha or beta. IL-6 alone, even at very high concentrations (up to 200 U/ml and 50 ng/ml), did not induce PGE2 production by fibroblasts and synovial cells. However, IL-1 alpha or beta induced PGE2 production by human dermal fibroblasts and by human synovial cells was inhibited (in 5/8 experiments) up to 62% by addition of IL-6. On the contrary in 2/4 experiments TNF alpha-induced PGE2 production was increased (approximately 2 fold) by the addition of IL-6. IL-1 and TNF alpha-induced collagenase production in synovial cells remained unchanged in the presence of IL-6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
4.
The effects of interleukin 1 (IL-1) on MC3T3-E1 cells (clonal osteoblast-like cells established from mouse calvaria) were studied to elucidate the mechanism of IL-1-induced bone resorption. Recombinant human interleukin 1 alpha (rhIL-1 alpha) and beta (rhIL-1 beta) stimulated PGE2 production in MC3T3-E1 cells in a dose dependent manner. rhIL-1 alpha and 1 beta also stimulated MC3T3-E1 cells to produce macrophage-colony stimulating activity (M-CSA) in a dose-dependent manner. Indomethacin completely abolished PGE2 production but did not affect CSA. These results suggest that bone resorption induced by IL-1s is at least in part mediated by PGE2 produced by osteoblasts, and that M-CSA produced by osteoblasts may synergistically potentiate bone resorption by recruiting osteoclast precursors.  相似文献   

5.
The function of interleukin-1 alpha and interleukin-1 beta (IL-1 alpha, IL-1 beta) in tetanus toxoid (TT) induced T-cell proliferation in cultures of peripheral blood mononuclear cells (PBL) obtained from healthy donors was assessed by using neutralizing antisera to IL-1 alpha and IL-1 beta. The neutralizing capacity and the specificity of the IL-1 antisera were tested by the use of the thymoma EL-4 NOB-1 cell line. Antisera to IL-1 beta effectively neutralized the proliferative capacity of human recombinant IL-1 beta but not of human recombinant IL-1 alpha and vice versa. Addition of either anti-IL-1 beta or anti-IL-1 alpha antiserum to the culture medium hardly affected TT induced T-cell proliferation. However, the proliferative T-cell response was consistently attenuated when a combination of IL-1 alpha and IL-1 beta antiserum was used. The antisera were never capable of completely abolishing the T-cell response to TT. We conclude that (a) IL-1 alpha and IL-1 beta are both necessary accessory signals for T-cell proliferation to antigen in vitro; (b) in T-cell proliferation IL-1 alpha and IL-1 beta are interchangeable; and (c) T-cell proliferation to antigen is only partially dependent on IL-1 as signal.  相似文献   

6.
Thymic peptide factors are known to modulate proliferation of normal human lymphocytes. In this work, we studied the effect of Prothymosin alpha (Pro alpha) on PHA-stimulated PBMC and PBLC. The observed effects of Pro alpha and thymosin alpha 1 (alpha 1) on PBMC were found to depend on the degree of cell stimulation, dose, and preincubation-time. Thymosin beta 4 (beta 4) had no effect on either cell type, regardless of the degree of stimulation, which shows that beta 4 may be used as a control peptide to work in this area. Induction of lymphoproliferation also depended on the presence of macrophages. Addition of monocytes or a cell-free monocyte culture supernatant (not containing IL-2) to the PHA-stimulated PBLC cultures resulted in T cell proliferation. Although IL-1 could not restore the PHA-induced proliferative response of isolated T cells by itself, it would enhance the helper effect of Pro alpha. Moreover, a polyclonal goat anti-human IL-2R (Tac Ag) did block the proliferative response induced by combined rIL-1 and Pro alpha, suggesting that an IL-2-dependent pathway of T cell proliferation was involved.  相似文献   

7.
In this study, we demonstrate that an Epstein-Barr virus-transformed B cell line, A-11, produced interleukin-1 (IL-1), a cytokine that regulates bone remodeling. A-11 cells produce IL-1 in a cell dose- and culture time-related manner. The IL-1 activity was neutralized by recombinant human IL-1 (rhIL-1) alpha antiserum, but not by rhIL-1 beta antiserum. The IL-1 was semi-purified by (NH4)2SO4 precipitation, Superose prep 12 gel filtration, and anion-exchange chromatography strongly stimulated in vitro bone resorption. The stimulatory effect of the purified IL-1 on bone resorption was prostaglandin independent. Purified IL-1 inhibited DNA and collagen synthesis in the osteoblastic cell line MC3T3-E1. However, it enhanced significantly the cellular activity of alkaline phosphatase (EC 3.1.3.1), a marker enzyme for differentiation of osteoblasts. On the other hand, A-11 cell proliferation was inhibited by addition of rhIL-1 alpha antiserum, but not by rhIL-1 beta antiserum. And cell proliferation was stimulated by exogenous rhIL-1 alpha and -beta.  相似文献   

8.
CD28 is an Ag of 44-kDa Mr that is expressed on the membrane of the majority of human T cells and that is recognized by mAb 9.3. The functional effects of mAb 9.3 on peripheral blood T cells were studied. mAb 9.3 was not mitogenic, unless it was combined with PMA. When CD28 was cross-linked after binding of mAb 9.3 to the T cell by immobilized or soluble anti-mouse IgG, T cells proliferated in response to rIL-2, provided that monocytes were also present. The additional signal required for IL-2 responsiveness after cross-linking of CD28 could also be delivered in cultures of purified T cells by a cellfree monocyte culture supernatant. Expression of IL-2R on about 10% of the T cells was demonstrated by staining with an anti-IL-2R mAb, and was found to be largely restricted to CD4+ cells. The active compound responsible for the helper signal in the monocyte culture supernatant was identified as IL-6 because purified IL-6 (but not IL-1 beta) had similar activity and because an antiserum to IL-6 (but not an antiserum to IL-1 beta) neutralized the activity of the monocyte supernatant and blocked T cell proliferation. An anti-IL-2R antibody also completely inhibited T cell proliferation induced by the combination of mAb 9.3, IL-2, and IL-6. Our results provide evidence that cross-linking of CD28 induces functional IL-2R and that this activity is dependent on a helper signal provided by monocytes, more specifically IL-6. Moreover, our results indicate that IL-6 (previously called B cell stimulatory factor-2) is active on T cells. If a natural ligand for CD28 can be identified, the mechanism of induction of IL-2 responsiveness described here might explain how T cells become nonspecifically involved in an ongoing cellular immune reaction.  相似文献   

9.
Interleukin 1 (IL-1) is a soluble factor secreted by stimulated monocytes (Mo) and animal macrophages (Mx). We have previously demonstrated that human Mo cultured in vitro for 1-6 days transform to Mx, and retain their ability to support concanavalin A (Con A)-driven T-cell proliferation. We have also shown that, paradoxically, these Mx do not secrete IL-1, when stimulated by endotoxin (LPS). In this study we examined two alternative hypotheses: T cells plus mitogen induce Mx IL-1 production, and human Mx deliver a second signal to T cells via a non-IL-1 mechanism. IL-1 was assayed in a mouse CD-1 thymocyte system without concanavalin A. Mo/Mx were cultured with T cells at low (2 X 10(4)/200 microliters) or high (1 X 10(5)/200 microliters) concentrations for 2 or 4 days, in the presence of Con A. Six hours prior to quantitation of proliferation, 50 microliters of supernatant was removed and assayed for IL-1. As expected both Mo and Mx enhanced T-cell proliferation eight- to tenfold. Mo secreted large amounts of IL-1; there was no demonstrable IL-1 activity present in supernatants from cultures containing either T cells and Mx, or Mx alone. Similar results were obtained by preincubating the cells (Mo, Mx, and T cells) with Con A for 12 hr and removing Con A prior to a 36-hr coculture. We examined the possibility that a small amount of IL-1 may be able to support Con A-stimulated T-cell proliferation and yet may not induce thymocyte proliferation. The highest dilutions of Mo supernatant (1:125) which supported T-cell proliferation also caused a fivefold increase in thymocyte proliferation. Supernatants from Mx failed to stimulate thymocyte proliferation or support Con A-driven T-cell proliferation. However, Mo and Mx lysates contain Il-1 activity. We conclude that human Mx support Con A-induced T-cell proliferation in the absence of IL-1 secretion. Mx may support T-cell proliferation by cell-bound IL-1 or by a non-IL-1 mechanism.  相似文献   

10.
W P Arend  B P Coll 《Cytokine》1991,3(5):407-413
Interleukin 1 receptor antagonist (IL-1ra) is a newly described cytokine that is produced by human monocytes cultured on adherent immunoglobulin G (IgG). These studies have characterized the binding of IL-1ra to receptors on human rheumatoid synovial cells in comparison to binding of IL-1 alpha. The human synovial cells bound 35S-IL-1ra with a Kd of 213 pM and a Ki of 134 pM. 125I-IL-1 alpha bound to the synovial cells with similar values, showing a Kd of 205 pM and a Ki of 58 pM. Cross-inhibition studies were performed to examine whether IL-1ra and IL-1 alpha interacted with the same receptors and in an identical fashion. At the highest concentrations of inhibitory proteins, the binding of each ligand was inhibited 100% by the same or opposite ligand. This result indicated that IL-1ra and IL-1 alpha bound to the same receptors and not to overlapping subsets of receptors. In addition, the binding of 35S-IL-1ra was inhibited in an identical fashion by equimolar amounts of IL-1ra or IL-1 alpha. However, twofold or greater amounts of IL-1ra in comparison to IL-1 alpha were required to offer comparable inhibition of binding of 125I-IL-1 alpha. These results suggest that IL-1ra and IL-1 alpha bind with equal avidity to IL-1 receptors but may not bind identically. Additional experiments are necessary to establish whether these two ligands may bind to different regions of the extracellular portion of the IL-1 receptor.  相似文献   

11.
Interleukin-1 alpha (IL-1alpha) and beta (IL-1beta) are well known factors that stimulate hematopoiesis, nevertheless there are reports that show that they can also inhibit this activity. While both IL-1alpha and IL-1beta induce the expression of hematopoietic cytokines, such as growth factors and their receptors on myeloid cells, helping thus to regulate hematopoiesis, it is not known if their inhibitory activity is also mediated through the induction of other specific cytokines. In this work we show that recombinant human IL-1beta (rhIL-1beta) inhibits the proliferation of a mouse IL-3-dependent myeloid multipotent cell line (32D cl3), without inducing its differentiation. We show that rhIL-1beta induces in 32D cl3 cells the expression of the tumor necrosis factor alpha (TNF-alpha) gene, a well known growth inhibitor, and that the rhIL-1beta growth inhibition property on 32D cl3 cells is partially due to this secreted TNF-alpha, hinting thus that the inhibition of hematopoiesis by IL-1 is mediated through other induced cytokines.  相似文献   

12.
We examined the interactions between supernatant from FMLP-activated human granulocytes, recombinant interleukin-1 (IL-1) and recombinant tumor necrosis factor (TNF) in the stimulation of prostaglandin E2 (PGE2) production by human amnion cells. Amnion cells from elective term cesarian sections were cultured in monolayer culture. Human granulocytes were activated with FMLP and centrifuged to obtained cell-free supernatant. Amnion cells were treated with granulocyte supernatant, IL-1 alpha, IL-1 beta, TNF-alpha, TNF-beta, or different combinations of these. Each of the stimulators alone enhanced the PGE2 production 5- to 27-fold. Granulocyte supernatant was synergistic with each of the cytokines. The combinations of IL-1 alpha or IL-1 beta with either TNF-alpha or TNF-beta caused a synergistic stimulation of amnion cell PGE2 production as well, whereas the combinations of IL-1 alpha with IL-1 beta or of TNF-alpha with TNF-beta were not synergistic. Furthermore, granulocyte supernatant was synergistic with the combination of IL-1 and TNF, resulting in a more than 150-fold stimulation of PGE2 production. Indomethacin completely suppressed these effects. We propose that granulocyte products acting together with IL-1 and TNF enhance PGE2 synthesis during inflammation, and serve as signals for the initiation of preterm labor in the setting of intra-amniotic infection.  相似文献   

13.
Decidualization of human endometrial stromal cells is suppressed by endometrial IL-1 in an autocrine or paracrine manner, indicating that constant suppression of stromal decidualization by IL-1 requires a neutralizing mechanism for IL-1 action to accept embryo implantation. Since production of IL-1ra in human endometrium is reported to be 10- to 30-fold higher than that of IL-1 alpha/beta, we investigated whether endogenous IL-1 beta secreted from human endometrial stromal cells can be inhibited by IL-1ra by using an in vitro decidualization culture. Human stromal cells were cultured with 8-Br-cAMP to induce decidualization, and concentrations of IL-1 beta, IL-8, and prolactin in the culture supernatants were assayed before and after decidualization. There was no significant difference in mean IL-1 beta concentrations measured before and after decidualization. Addition of IL-1ra to endometrial stromal cell cultures strongly inhibited endogenous IL-8 secretion from the cells. Although IL-1 beta showed a biphasic effect on cell proliferation and a suppressive effect on decidualization of stromal cells, these effects were completely inhibited by IL-1ra. The results imply that a high in vivo concentration of IL-1ra in human endometrial tissues may regulate IL-1 effects on decidualization and cell proliferation of human endometrial stromal cells.  相似文献   

14.
Human IL-1 beta and TNF alpha production by normal and transformed monocytoid cells was studied using biological assays, cytokine specific ELISA and by immunocytochemical methods on a single cell level. Quiescent human blood monocytes and cultured in vitro transformed human monocytoid cell lines U-937, THP-1 and HL-60 did not contain IL-1 beta and TNF alpha in their cytoplasm. IL-1 beta synthesis and secretion was induced by LPS stimulation in nearly 90% monocytes, 15-20% U-937, 3-5% THP-1 and in no HL-60 cells. Normal human blood monocytes had a more rapid kinetics of IL-1 beta synthesis. IL-1 beta positive cells stained with antibodies to human IL-1 beta appeared at 1-2 hours after LPS application, while in monocytic cell lines only after 4-6 hours. Using immunoperoxidase staining of U-937 cells pulse labelled with 3H-thymidine, it was shown that proliferating cells did not synthetize IL-1 beta. Instead of IL-1 beta, TNF alpha could be induced by LPS in U-937 cells only after preliminary differentiation with PMA. Recombinant IL-1 beta induced a very low level of TNF alpha production in PMA-treated cells. Similarly recombinant TNF alpha alone induced IL-1 beta synthesis only in a few U-937 cells.  相似文献   

15.
16.
The interleukin-1 receptor antagonist (IL-1ra) inhibits the binding of interleukin-1 (IL-1) to T-cell lines possessing the type I IL-1 receptor; evidence has been published (Carter, D. B., Deibel, M. R. J., Dunn, C. J., Tomich, C. S., Laborde, A. L., Slightom, J. L., Berger, A. E., Bienkowski, M. J., Sun, F. F., McEwan, R. N., Harris, P. K. W., Yem, A. W., Waszak, G. A., Chosay, J. G., Sieu, L. C., Hardee, M. M., Zurcher-Neely, H. A., Reardon, I. M., Heinrickson, R. L., Truesdell, S. E., Shelly, J. A., Eessalu, T. E., Taylor, B. M., and Tracey, D. E. (1990) Nature 344, 633-638; Hannum, C. H., Wilcox, C. J., Arend, W. P., Joslin, F. G., Dripps, D. J., Heimdal, P. L., Armes, L. G., Sommer, A., Eisenberg, S. P., and Thompson, R. C. (1990) Nature 343, 336-340) that IL-Ira does not bind to the type II IL-1 receptor (IL-1RtII). In this study we examined the ability of human recombinant IL-1ra to block the binding of IL-1 to the IL-1RtII on human polymorphonuclear leukocytes (PMN) and Raji human B-lymphoma cells. The binding of 125I-IL-1 beta to PMN was competively inhibited by IL-1ra. IL-1 beta was more potent in inhibiting the binding of 125I-IL-1 beta than IL-1ra. Incubating PMN with 125I-IL-1ra in the presence of increasing concentrations of IL-1 beta or IL-1ra showed that IL-1 beta was an approximately 40-fold more potent inhibitor of binding of 125I-IL-1ra than unlabeled IL-1ra. The IL-1ra was approximately 500-fold less potent in inhibiting the binding of 125I-IL-1 alpha than IL-1 alpha. IL-1ra was also able to competitively inhibit binding of 125I-IL-1 beta to Raji cells. PMN or Raji cells were also incubated with 125I-IL-1 in the absence or presence of IL-1 or IL-1ra. After cross-linking of IL-1 to cells followed by specific immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a band at 85 kDa corresponding to the 68-kDa IL-1RtII. However, in the presence of an excess of either unlabeled IL-1 or IL-1ra, the 85-kDa IL-1.IL-1RtII complex was not present. These findings demonstrate that the IL-1ra recognizes and blocks IL-1 binding to the IL-1RtII.  相似文献   

17.
We report that the addition of human macrophage inflammatory protein-3 beta (MIP-3 beta) to cultures of human PBMCs that have been activated with LPS or PHA results in a significant enhancement of IL-10 production. This effect was concentration-dependent, with optimal MIP-3 beta concentrations inducing more than a 5-fold induction of IL-10 from LPS-stimulated PBMCs and a 2- to 3-fold induction of IL-10 from PHA-stimulated PBMCs. In contrast, no significant effect on IL-10 production was observed when 6Ckine, the other reported ligand for human CCR7, or other CC chemokines such as monocyte chemoattractant protein-1, RANTES, MIP-1 alpha, and MIP-1 beta were added to LPS- or PHA-stimulated PBMCs. Similar results were observed using activated purified human peripheral blood monocytes or T cells. Addition of MIP-3 beta to nonactivated PBMCs had no effect on cytokine production. Enhancement of IL-10 production by MIP-3beta correlated with the inhibition of IL-12 p40 and TNF-alpha production by monocytes and with the impairment of IFN-gamma production by T cells, which was reversed by addition of anti-IL-10 Abs to the cultures. The ability of MIP-3 beta to augment IL-10 production correlated with CCR7 mRNA expression and stimulation of intracellular calcium mobilization in both monocytes and T cells. These data indicate that MIP-3 beta acts directly on human monocytes and T cells and suggest that this chemokine is unique among ligands binding to CC receptors due to its ability to modulate inflammatory activity via the enhanced production of the anti-inflammatory cytokine IL-10.  相似文献   

18.
Interleukin-1 (IL-1), mainly produced by monocyte-macrophages, is a polypeptide cytokine with pleiotropic biological effects. IL-1 plays an important role in mediating immune response and inflammation. Recently a natural inhibitor to IL-1 has been discovered, interleukin-1 receptor antagonist (IL-1ra), produced by human monocytes cultured on adherent IgG which binds to the IL-1 receptors. In our study we found that the pretreatment of cells with serial dilutions of IL-1ra (250 ng/ml-2.5 pg/ml) inhibits, in a dose-dependent manner, lymphocyte DNA synthesis stimulated with Con A (10 micrograms/ml). IL-1ra did not have any effect on resting peripheral blood mononuclear cells (PBMC). Time course experiments show that IL-1ra at 250 ng/ml has its maximum inhibitory effect on lymphocyte blastogenesis when cells are pretreated 2 h before Con A. No effect was found when hrIL-1ra was added after Con A. Moreover, hrIL-1ra also inhibits the enhancing effects of exogenous hrIL-1 (400, 200, 100 and 50 ng/ml) on lymphocytes stimulated with Con A; while when hrIL-1ra was used on cells treated with only Con A, the inhibition was more pronounced. When PBMC were removed from monocytes, by adherence, the Con A-treated lymphocytes were not influenced by 2 h pretreatment of hrIL-1ra; while a strong inhibition was found when exogenous hrIL-1 was added at different concentrations. In addition, hrIL-1ra also inhibits the enhancing effect of hrIL-2 on lymphocyte DNA synthesis. In another set of experiments PBMC were pretreated with hrIL-1ra (250 ng/ml) for 2 h and then added LPs (10 ng/ml) and IL-1 alpha generation was determined using ELISA. In these experiments IL-1ra completely abolished the generation of IL-1 alpha. These data suggest that hrIL-1ra exhibits a dose-response inhibition of lymphocyte blastogenesis induced by Con A, probably through the down-regulation of IL-1 synthesis necessary as an early signal for T-cell activation and IL-2 production.  相似文献   

19.
Saccharomyces boulardii (Sb) is a non-pathogenic yeast that ameliorates intestinal injury and inflammation caused by a wide variety of enteric pathogens. We hypothesized that Sb may exert its probiotic effects by modulation of host cell signaling and pro-inflammatory gene expression. Human HT-29 colonocytes and THP-1 monocytes were stimulated with IL-1beta, TNFalpha or LPS in the presence or absence of Sb culture supernatant (SbS). IL-8 protein and mRNA levels were measured by ELISA and RT-PCR, respectively. The effect of SbS on IkappaB alpha degradation was studied by Western blotting and on NF-kappaB-DNA binding by EMSA. NF-kappaB-regulated gene expression was evaluated by transient transfection of THP-1 cells with a NF-kappaB-responsive luciferase reporter gene. SbS inhibited IL-8 protein production in IL-1beta or TNFalpha stimulated HT-29 cells (by 75% and 85%, respectively; P<0.001) and prevented IL-1beta-induced up-regulation of IL-8 mRNA. SbS also inhibited IL-8 production, prevented IkappaB alpha degradation, and reduced both NF-kappaB-DNA binding and NF-kappaB reporter gene up-regulation in IL-1beta or LPS-stimulated THP-1 cells. Purification and characterization studies indicate that the S. boulardii anti-inflammatory factor (SAIF) is small (<1 kDa), heat stable, and water soluble. The probiotic yeast Saccharomyces boulardii exerts an anti-inflammatory effect by producing a low molecular weight soluble factor that blocks NF-kappaB activation and NF-kappaB-mediated IL-8 gene expression in intestinal epithelial cells and monocytes. SAIF may mediate, at least in part, the beneficial effects of Saccharomyces boulardii in infectious and non-infectious human intestinal disease.  相似文献   

20.
We report a new, monocyte-independent system for the induction of activation and proliferation of human T cells in response to murine hybridomas expressing the OKT3 monoclonal antibody (OKT3 hybridomas). Incubation of nylon-wool-nonadherent (NA) lymphocytes or purified T cells with OKT3 hybridomas resulted in interleukin-2 (IL-2) production, expression of IL-2 receptor, modulation of the CD3 antigen, and proliferation. In contrast, murine hybridomas (OKT4, OKT8, anti-HLA-DR, and others) expressing monoclonal antibodies (mAb) other than OKT3 did not induce T-cell activation and proliferation. T cells did not respond to OKT3 mAb alone. OKT3 hybridomas alone did not produce interleukin-1 (IL-1) or other soluble factors that might be involved in the induction of IL-2 production by T cells, and they did not contain membrane-bound IL-1. In addition, IL-1 activity was not detected in cultures of NA-lymphocytes and OKT3 hybridomas, clearly demonstrating that IL-1 was not required, at least in this system, for T-cell activation and proliferation. Direct cell-cell contact between T cells and OKT3 hybridomas was required for IL-2 production. Thirty to fifty percent of T cells formed conjugates with the OKT3 hybridomas but not with the OKT4 or OKT8 hybridomas. Both conjugate formation and IL-2 production were significantly inhibited by the OKT3 mAb and by the anti-LFA-1 mAb. The cells responsible for IL-2 production were found to be of the T3+ T4+ T8- Leu 7- Leu 11- phenotype. IL-2 activity produced by NA-lymphocytes in response to OKT3 hybridomas became detectable as early as 1 hr and reached a maximum by 8 hr, preceding IL-2 receptor expression, modulation of the CD3 antigen, and [3H]thymidine incorporation of T cells. T cells produced higher concentrations of IL-2 in response to OKT3 hybridomas than in response to equal numbers of monocytes and OKT3 mAb. Addition of monocytes to cultures of T cells and OKT3 hybridomas resulted in suppression of IL-2 production in a concentration-dependent manner, suggesting that monocytes regulate the levels of IL-2 production. This monocyte-independent system may be useful for further dissection of T-cell activation and proliferation and its regulation by monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号