首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. A number of yeast species were examined for the presence of β-glucanases. Extracts obtained by cell disruption of Saccharomyces cerevisiae, Fabospora fragilis and Hansenula anomala hydrolysed laminarin and pustulan with the production of glucose. Enzymic activities were also detected in the culture fluids of F. fragilis and H. anomala grown aerobically in buffered mineral medium with glucose as the carbon source. 2. F. fragilis and H. anomala possessed approximately sevenfold higher β-(1→3)-glucanase activity than S. cerevisiae. 3. Intracellular exo-β-glucanase from baker's yeast was purified 344-fold from the dialysed cell extract. 4. Exo-β-glucanase from F. fragilis was purified 114-fold from the dialysed culture fluid and 423-fold from the dialysed intracellular extract. The purified extracellular and intracellular enzymes had similar properties and essentially the same specific activity, 79 enzyme units/mg. of protein. 5. Extracellular exo-β-glucanase of H. anomala was purified 600-fold. 6. The optimum pH of the enzymes from F. fragilis, S. cerevisiae and H. anomala was 5·5 in each case. Chromatographic evidence indicated that the three enzymes remove glucosyl units sequentially from laminarin as well as pustulan. 7. The ratio of activities towards laminarin and pustulan remained constant during purification of the exo-β-glucanase obtained from the three species, suggesting a single enzyme. Additional evidence for its unienzymic nature are: (i) the two activities were destroyed at exactly the same rate on heating of the purified enzyme from F. fragilis at three different temperatures; (ii) the competitive inhibitor glucono-δ-lactone gave the same value of Ki when tested with either substrate; (iii) quantitative application of the `mixed-substrate' method with the purified enzyme of S. cerevisiae gave data that were in excellent agreement with those calculated on the assumption of a single enzyme. 8. The purified exo-β-glucanases of the different species of yeast had different kinetic constants. The ratios of maximal velocities and Km values with laminarin and pustulan differed markedly. Comparison of Vmax. and Km values suggests that the rapid release of spores from asci in F. fragilis might be explained in terms of an enzyme with higher maximal velocity and higher affinity to the ascus wall than that present in baker's yeast. 9. The estimated molecular weights for exo-β-glucanases from F. fragilis, S. cerevisiae and H. anomala were 22000, 40000 and 30000 respectively.  相似文献   

3.
4.
The yeast plasmid 2μ circle   总被引:1,自引:0,他引:1  
James R. Broach 《Cell》1982,28(2):203-204
  相似文献   

5.
6.
Oxidation of methanol, formaldehyde and formic acid was studied in cells and cell-free extract of the yeast Candida boidinii No. 11Bh. Methanol oxidase, an enzyme oxidizing methanol to formaldehyde, was formed inducibly after the addition of methanol to yeast cells. The oxidation of methanol by cell-free extract was dependent on the presence of oxygen and independent of any addition of nicotine-amide nucleotides. Temperature optimum for the oxidation of methanol to formaldehyde was 35 degrees C, pH optimum was 8.5. The Km for methanol was 0.8mM. The cell-free extract exhibited a broad substrate specificity towards primary alcohols (C1--C6). The activity of methanol oxidase was not inhibited by 1mM KCN, EDTA or monoiodoacetic acid. The strongest inhibitory action was exerted by p-chloromercuribenzoate. Both the cells and the cell-free extract contained catalase which participated in the oxidation of methanol to formaldehyde; the enzyme was constitutively formed by the yeast. The pH optimum for the degradation of H2O2 was in the same range as the optimum for methanol oxidation, viz. at 8.5. Catalase was more resistant to high pH than methanol oxidase. The cell-free extract contained also GSH-dependent NAD-formaldehyde dehydrogenase with Km = 0.29mM and NAD-formate dehydrogenase with Km = 55mM.  相似文献   

7.
Fractionation of proteins secreted into the culture medium by intact cells and protoplasts of Pichia polymorpha showing enzyme activity against laminarin, pustulan or p-nitrophenyl--d-glucopyranoside has been performed, and the results compared with those obtained with cell-free extracts and lysed protoplasts. Fractionation with DEAE Sephadex A50 has proved to be the best method, yielding at least three fractions which hydrolyse laminarin. One of these fractions was active on both laminarin and pustulan. Filtration on Sephadex G-100 column only yielded one active preparation. Evidence supporting the conclusion that there are three different -glucanases located in the periplasmic space is presented.  相似文献   

8.
Evidence is provided to extend earlier observations that glycogen and flocculence levels vary concurrently in brewing yeast. The use of glycogen mutants, the alterations of growth conditions specifically to inhibit glycogen storage, and observations on glycogen decreases during endogenous metabolism have verified the above. A mechanism by which glycogen might exert its effect on flocculation is suggested.  相似文献   

9.
The distribution of bromophenol blue between the cell and the medium was used to calculate the intracellular pH of yeast. In buffered media the intracellular pH exhibited a plateau at pH i =5.8 for low external pH values and another at pH i =7.6 for high external pH values. The production of H ions by the yeast during utilization of glucose is not accompanied by an alkalinization of the cell interior. The pH i even decreases somewhat in the presence of glucose and K ions.
  1. (1)
    Внутриклеточный pH дрожжей вычисляли на основании распределения бромфеноловой сини между клетками и средой.  相似文献   

10.
A glucose-sensing mechanism has been described in Saccharomyces cerevisiae that regulates expression of glucose transporter genes. The sensor proteins Snf3 and Rgt2 are homologous to the transporters they regulate. Snf3 and Rgt2 are integral plasma membrane proteins with unique carboxy-terminal domains that are predicted to be localized in the cytoplasm. In a recent paper Ozcan and colleagues [Ozcan S, et al. EMBO J 1998; 17:2556-2773 (Ref. 1)] present evidence that the cytoplasmic domains of Snf3 and Rgt2 are required to transmit a glucose signal. They provide additional evidence to support their earlier assertion [Ozcan S, et al. Proc Natl Acad Sci USA 1996;93:12428-12432 (Ref. 2)] that glucose transport via Snf3 and Rgt2 is not involved in glucose sensing but, rather, that these proteins behave like glucose receptors. Other examples of transporter homologs with regulatory functions have recently been described in fungi as well [Madi L, et al. Genetics 1997; 146:499-508 (Ref. 3). and Didion T, et al. Mol Microbiol 1998;27:643-650 (Ref. 4)]. The identification of this class of nutrient sensors is an important step in elucidating the complex of regulatory mechanisms that leads to adaptation of fungi to different environments.  相似文献   

11.
Skulachev VP 《FEBS letters》2002,528(1-3):23-26
During recent years, several pieces of indirect evidence of a programmed death in yeast have been published. Among them there are observations that some mammalian pro- or anti-apoptotic proteins induce or prevent the death of yeast; some toxic compounds kill yeast at lower concentrations if protein synthesis is operative; this death, as well as the death due to certain mutations, shows some apoptotic markers. In April 2002, the yeast programmed death concept received direct support. Madeo et al. [Madeo et al., Mol. Cell 9 (2002) 911-917] disclosed a caspase which is activated by H(2)O(2) or aging and is required for the protein-synthesis-dependent death of yeast. Thus, a specific apoptosis-mediating protein was identified for the first time in Saccharomyces cerevisiae. Independently, Severin and Hyman [Severin, F.F., Hyman, A.A., Curr. Biol. 12 (2002) R233-R235] discovered that death of yeast, induced by a high level of a pheromone, is programmed. In particular, the death was found to be prevented by cycloheximide and cyclosporin A. It required mitochondrial DNA, cytochrome c and the pheromone-initiated protein kinase cascade. When haploids of opposite mating types were mixed, some cells died, the inhibitory pattern being the same as in the case of the killing by pheromone. Inhibition of mating proved to be favorable for death. Thus, pheromone not only activates mating but also eliminates yeast cells failing to mate. Such an effect should (i) stimulate switch of the yeast population from vegetative to sexual reproduction, and (ii) shorten the life span and, hence, accelerate changing of generations. As a result, the probability of appearance of new traits could be enhanced when ambient conditions turned for the worse.  相似文献   

12.
We have engineered brewer's yeast as a general platform for de novo synthesis of diverse β-lactam nuclei starting from simple sugars, thereby enabling ready access to a number of structurally different antibiotics of significant pharmaceutical importance. The biosynthesis of β-lactam nuclei has received much attention in recent years, while rational engineering of non-native antibiotics-producing microbes to produce β-lactam nuclei remains challenging. Benefited by the integration of heterologous biosynthetic pathways and rationally designed enzymes that catalyze hydrolysis and ring expansion reactions, we succeeded in constructing synthetic yeast cell factories which produce antibiotic cephalosporin C (CPC, 170.1 ± 4.9 μg/g DCW) and the downstream β-lactam nuclei, including 6-amino penicillanic acid (6-APA, 5.3 ± 0.2 mg/g DCW), 7-amino cephalosporanic acid (7-ACA, 6.2 ± 1.1 μg/g DCW) as well as 7-amino desacetoxy cephalosporanic acid (7-ADCA, 1.7 ± 0.1 mg/g DCW). This work established a Saccharomyces cerevisiae platform capable of synthesizing multiple β-lactam nuclei by combining natural and artificial enzymes, which serves as a metabolic tool to produce valuable β-lactam intermediates and new antibiotics.  相似文献   

13.
In order to eliminate the confusion resulting from the homonymsSaccharomycopsis Schiönning andSaccharomycopsis Guilliermond and to eliminate the usage of the nameEndomycopsis which has been perpetuated contrary to the International Code of Botanical Nomenclature, the authors in this article outline the history of the speciesSaccharomycopsis capsularis Schiönning andSaccharomycopsis guttulata (Robin)Schiönning and give their reasons for proposing the nameCyniclomyces nom. nov. for the genus to which the second species is assigned, a step which permits the use of the generic nameSaccharomycopsis Schiönning to designate the genus currently cited asEndomycopsis.
Zusammenfassung Um Unklarheiten, herrührend von den HomonymenSaccharomycopsis Schiönning undSaccharomycopsis Guilliermond, zu beseitigen und um den fortgesetzten Gebrauch der BezeichnungEndomycopsis, welche im Gegensatz zum Internationalen Code der botanischen Nomenklatur steht, auszuschliessen, haben die Autoren dieses Artikels die Geschichte der ArtenSaccharomycopsis capsularis Schiönning undSaccharomycopsis guttulata (Robin)Schiönning dargelegt und ihre Gründe dafür angegeben, den NamenCyniclomyces nom. nov. für die Gattung zu gebrauchen, zu dem die zweite Art zugeteilt wird.Dieser Schritt würde den Gebrauch des GattungsnamenSaccharomycopsis Schiönning für die Gattung, die gegenwärtig alsEndymycopsis zitiert wird, zulassen.
  相似文献   

14.
15.
Inducibility of error-prone DNA repair in yeast?   总被引:3,自引:0,他引:3  
Whereas some experimental evidence suggests that mutagenesis in yeast after treatment with DNA-damaging agents involves inducible functions, a general-acting error-prone repair activity analogous to the SOS system of Escherichia coli has not yet been demonstrated. The current literature on the problem of inducibility of mutagenic repair in yeast is reviewed with emphasis on the differences in the experimental procedures applied.  相似文献   

16.
Moss and lichen samples from the region of the Bulgarian base on Livingston Island, Antarctica were examined for the presence of yeasts. Six pure cultures were obtained. They were screened for -glucosidase production and two of them were selected. These were identified as Cryptococcus albidus AL2 and C. albidus AL3, according to their morphology, reproductive behaviour, and growth at different temperatures, salt concentrations, nutritional characteristics and various biochemical tests. These strains were examined for biosynthesis of -glucosidase on different carbon sources under aerobic conditions. High exocellular and endocellular activities were obtained when they were grown on cellobiose, methyl--D-glucopyranoside and salicin. The time course of growth and -glucosidase production of the yeast was examined by cultivation in a medium with cellobiose under aerobic conditions at temperatures 18 and 24 °C for 96 h. Cryptococcus albidus AL2 and C. albidus AL3 synthesized exocellular enzyme, respectively 58.33 and 55.83 U/ml and endocellular enzyme 137.75 and 205.34 U/ml at 24 °C for 72 h of the cultivation.  相似文献   

17.
Summary A new budding yeast has been isolated from soil. Its most striking feature is the formation, generally preceded by isogamous or heterogamous conjugation, of unusually large multispored asci. The organism possesses a strong fermentative ability, fermenting glucose, galactose, saccharose and raffinose for one-third. Nitrate is not assimilated. It forms a pellicle in malt extract. A pseudomycelium is also formed. Cytological examination showed the vegetative cells to be uninucleate. The relationship which this yeast shows with theDipodascaceae and, in particular, withDipodascus uninucleatus Biggs, is discussed. For the classification of the yeast the new genusKluyveromyces was created. For the species the nameKluyveromyces polysporus is proposed. The Latin diagnosis of both the genus and the species is given.  相似文献   

18.
Transport of ethanol in baker’s yeast   总被引:1,自引:0,他引:1  
Ethanol is transported into various strains of baker's yeast by simple diffusion (no effect of inhibitors and a linear concentration dependence of the initial rate of uptake and final distribution in cells). It distributes itself in 96.6 +/- 16.2% of intracellular water.  相似文献   

19.
DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3′–5′ exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo. We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3′–5′ exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA. A flap, mimicking a D-loop or a hairpin structure, on the 5′ end of the blocking primer inhibited Pol ε from synthesizing DNA up to the fork junction. This inhibition was observed for Pol ε but not with Pol δ, RB69 gp43 or Pol η. Neither was Pol ε able to extend a D-loop in reconstitution experiments. Finally, we show that the observed strand displacement synthesis by exonuclease-deficient Pol ε is distributive. Our results suggest that Pol ε is unable to extend the invading strand in D-loops during homologous recombination or to add more than two nucleotides during long-patch base excision repair. Our results support the hypothesis that Pol ε participates in short-patch base excision repair and ribonucleotide excision repair.  相似文献   

20.
The yeast Saccharomyces cerevisiae was shown to be extremely sensitive to dehydration–rehydration treatments when stationary phase cells were subjected to conditions of severe oxygen limitation, unlike the same cells grown in aerobic conditions. The viability of dehydrated anaerobically grown yeast cells never exceeded 2 %. It was not possible to increase this viability using gradual rehydration of dry cells in water vapour, which usually strongly reduces damage to intracellular membranes. Specific pre-dehydration treatments significantly increased the resistance of anaerobic yeast to drying. Thus, incubation of cells with trehalose (100 mM), increased the viability of dehydrated cells after slow rehydration in water vapour to 30 %. Similarly, pre-incubation of cells in 1 M xylitol or glycerol enabled up to 50–60 % of cells to successfully enter a viable state of anhydrobiosis after subsequent rehydration. We presume that trehalose and sugar alcohols function mainly according to a water replacement hypothesis, as well as initiating various protective intracellular reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号