首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammatory mediators such as TNF-alpha, IL-6, and IL-1 are important in the pathogenesis of inflammatory bowel diseases and are regulated by the activation of NF-kappaB. The aim of the present study was to investigate whether the NF-kappaB essential modulator (NEMO)-binding domain (NBD) peptide, which has been shown to block the association of NEMO with the IkappaB kinasebeta subunit (IKKbeta) and inhibit NF-kappaB activity, reduces inflammatory injury in mice with colitis. Two colitis models were established by the following: 1) inclusion of dextran sulfate sodium salt (DSS) in the drinking water of the mice; and 2) a trinitrobenzene sulfonic acid enema. Marked NF-kappaB activation and expression of proinflammatory cytokines were observed in colonic tissues. The NBD peptide ameliorated colonic inflammatory injury through the down-regulation of proinflammatory cytokines mediated by NF-kappaB inhibition in both models. These results indicate that an IKKbeta-targeted NF-kappaB blockade using the NBD peptide could be an attractive therapeutic approach for inflammatory bowel disease.  相似文献   

2.
3.
4.
5.
6.
Negative regulation of NF-kappaB signaling by PIAS1   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
A(2A) adenosine receptors (A(2A)AR) inhibit inflammation, although the mechanisms through which adenosine exerts its effects remain unclear. Although the transfer of regulatory Th cells blocks colitis induced by pathogenic CD45RB(high) Th cells, we show that CD45RB(low) or CD25+ Th cells from A(2A)AR-deficient mice do not prevent disease. Moreover, CD45RB(high) Th cells from A(2A)AR-deficient mice were not suppressed by control CD45RB(low) Th cells. A(2A)AR agonists suppressed the production of proinflammatory cytokines by CD45RB(high) and CD45RB(low) T cells in association with a loss of mRNA stability. In contrast, anti-inflammatory cytokines, including IL-10 and TGF-beta, were minimally affected. Oral administration of the A(2A)AR agonist ATL313 attenuated disease in mice receiving CD45RB(high) Th cells. These data suggest that A(2A)AR play a novel role in the control of T cell-mediated colitis by suppressing the expression of proinflammatory cytokines while sparing anti-inflammatory activity mediated by IL-10 and TGF-beta.  相似文献   

15.
16.
17.
18.
Pharmacological studies suggest that A(2B) adenosine receptors mediate proinflammatory effects of adenosine in human mast cells in part by up-regulating production of Th2 cytokines and angiogenic factors. This concept has been recently challenged by the finding that mast cells cultured from bone marrow-derived mast cells (BMMCs) of A(2B) knockout mice display an enhanced degranulation in response to FcepsilonRI stimulation. This finding was interpreted as evidence of anti-inflammatory functions of A(2B) receptors and it was suggested that antagonists with inverse agonist activity could promote activation of mast cells. In this report, we demonstrate that genetic ablation of the A(2B) receptor protein has two distinct effects on BMMCs, one is the previously reported enhancement of Ag-induced degranulation, which is unrelated to adenosine signaling; the other is the loss of adenosine signaling via this receptor subtype that up-regulates IL-13 and vascular endothelial growth factor secretion. Genetic ablation of A(2B) receptors had no effect on A(3) adenosine receptor-dependent potentiation of Ag-induced degranulation in mouse BMMCs, but abrogated A(2B) adenosine receptor-dependent stimulation of IL-13 and vascular endothelial growth factor secretion. Adenosine receptor antagonists MRS1706 and DPCPX with known inverse agonist activity at the A(2B) subtype inhibited IL-13 secretion induced by the adenosine analog NECA, but did not mimic the enhanced Ag-induced degranulation observed in A(2B) knockout BMMCs. Thus, our study confirmed the proinflammatory role of adenosine signaling via A(2B) receptors and the anti-inflammatory actions of A(2B) antagonists in mouse BMMCs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号