首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A family 19 chitinase (OsChia1c, class I) from rice, Oryza sativa L., and its chitin-binding domain-truncated mutant (OsChia1cCBD, class II) were produced by the Pichia expression system, and the hydrolytic mechanism toward N-acetylglucosamine hexasaccharide [(GlcNAc)6] was investigated by HPLC analysis of the reaction products. The profile of the time-course of (GlcNAc)6 degradation obtained by OsChia1c was identical to that obtained by OsChia1cCBD, indicating that the chitin-binding domain does not significantly participate in oligosaccharide hydrolysis. From the theoretical analysis of the reaction time-course of OsChia1cCBD, the free energy changes of sugar residue binding were estimated to be –0.4, –4.7, +3.4, –0.5, –2.3, and –1.0 kcal/mol for the individual subsites of (–3), (–2), (–1), (+1), (+2), and (+3), respectively. The hexasaccharide substrate appears to bind to the enzyme through interactions at the high-affinity sites, (–2) and (+2), and the sugar residues at both ends more loosely bind to the corresponding subsites, (–3) and (+3). The docking study of (GlcNAc)6 with the modeled structure of OsChia1cCBD supported the subsite structure estimated from the experimental time-course of hexasaccharide degradation. Since the class II chitinase from barley seeds was reported to possess a similar subsite structure from (–3) to (+3) and a similar free energy distribution, substrate-binding mode of plant chitinases of this class would be similar to each other.  相似文献   

2.
The environments of the binding subsites in Asp 101-modified lysozyme, in which glucosamine or ethanolamine is covalently bound to the carboxyl group of Asp 101, were investigated by chemical modification and nuclear magnetic resonance spectroscopy. Trp 62 in each of the native and the modified lysozymes was nitrophenylsulfenylated. The yield of the nitrophenylsulfenylated derivative from the lysozyme modified with glucosamine at Asp 101 (GlcN-lysozyme) was considerably lower than those from native lysozyme and from the lysozyme modified with ethanolamine at Asp 101 (EtN-lysozyme). These results suggest that Trp 62 in GlcN-lysozyme is less susceptible to nitrophenylsulfenylation. Kinetic analyses of the [Trp 62 and Asp 101]-doubly modified lysozymes indicated that the nitrophenylsulfenylation of Trp 62 in the native lysozyme, EtN-lysozyme, or GlcN-lysozyme decreased the sugar residue affinity at subsite C while increasing the binding free energy change by 2.7 kcal/mol, 1.5 kcal/mol, or 0.1 kcal/mol, respectively. Although the profile of tryptophan indole NH resonances in the 1H-NMR spectrum for EtN-lysozyme was not different from that for the native lysozyme, the indole NH resonance of Trp 62 in GlcN-lysozyme was apparently perturbed in comparison with that of native lysozyme. These results suggest that the environment of subsite C in GlcN-lysozyme is considerably different from those in native lysozyme and EtN-lysozyme. The glucosamine residue attached to Asp 101 may contact the sugar residue binding site of the lysozyme, affecting the environment of subsite C.  相似文献   

3.
M Muraki  K Harata  Y Jigami 《Biochemistry》1992,31(38):9212-9219
The functional role of tyrosine-63 in the catalytic action of human lysozyme (EC 3.2.1.17) has been probed by site-directed mutagenesis. In order to identify the role of Tyr63 in the interaction with substrate, both the three-dimensional structures and the enzymatic functions of the mutants, in which Tyr63 was converted to phenylalanine, tryptophan, leucine, or alanine, have been characterized in comparison with those of the wild-type enzyme. X-ray crystallographical analysis of the mutant enzyme at not less than 1.77-A resolution indicated no remarkable change in tertiary structure except the side chain of 63rd residue. The conversion of Tyr63 to Phe or Trp did not change the enzymatic properties against the noncharged substrate (or substrate analogs) largely, while the conversion to Leu or Ala markedly reduced the catalytic activity to a few percent of wild-type enzyme. Kinetic analysis using p-nitrophenyl penta-N-acetyl-beta-(1----4)-chitopentaoside (PNP-(GlcNAc)5) as a substrate revealed that the reduction of activity should mainly be attributed to the reduction of affinity between enzyme and substrate. The apparent contribution of the phenolic hydroxyl group and the phenol group in the side chain of Tyr63 was estimated to 0.4 +/- 0.4 and 2.5 +/- 0.8 kcal mol-1, respectively. The result suggested that the direct contact between the planar side-chain group of Tyr63 and the sugar residue at subsite B is a major determinant of binding specificity toward a electrostatically neutral substrate in the catalytic action of human lysozyme.  相似文献   

4.
The contributions of the -3 subsite and a putative +3 subsite to substrate positioning in ChiA from Serratia marcescens have been investigated by comparing how ChiA and its -3 subsite mutant W167A interact with soluble substrates. The data show that Trp - GlcNAc stacking in the -3 subsite rigidifies the protein backbone supporting the formation of the intermolecular interaction network that is necessary for the recognition and positioning of the N-acetyl groups before the -1 subsite. The +3 subsite exhibits considerable substrate affinity that may promote endo-activity in ChiA and/or assist in expelling dimeric products from the +1 and +2 subsites during processive hydrolysis.  相似文献   

5.
4-Nitrophenyl penta-N-acetyl-β-chitopentaoside [(GlcNAc)5-pNP] was hydrolyzed by a family GH-19 class II barley chitinase, and the enzymatic reaction was monitored by real-time ESIMS. The wild-type enzyme hydrolyzed (GlcNAc)5-pNP producing predominantly (GlcNAc)3-pNP and a lesser amount of (GlcNAc)2-pNP, indicating that the (GlcNAc)5 portion of the substrate binds predominantly to subsites −2 ∼ +3 and less frequently to −3 ∼ +2. However, (GlcNAc)2-pNP was mainly produced from (GlcNAc)5-pNP by mutated enzymes, in which Trp72 and Trp82 located at +3/+4 were substituted with alanine (W72A and W72A/W82A), indicating that the (GlcNAc)5 portion of the substrate binds predominantly to subsites −3 ∼ +2 of the mutants. The mutations of the tryptophan residues resulted in a significant shift of the substrate-binding mode to the glycon side, supporting the idea that the indole side chain of Trp72 interacts with the 4-nitrophenyl moiety of the substrate at subsite +4.  相似文献   

6.
Tryptophan residues located in the substrate-binding cleft of a class V chitinase from Nicotiana tabacum (NtChiV) were mutated to alanine and phenylalanine (W190F, W326F, W190F/W326F, W190A, W326A, and W190A/W326A), and the mutant enzymes were characterized to define the role of the tryptophans. The mutations of Trp326 lowered thermal stability by 5-7 °C, while the mutations of Trp190 lowered stability only by 2-4 °C. The Trp326 mutations strongly impaired enzymatic activity, while the effects of the Trp190 mutations were moderate. The experimental data were rationalized based on the crystal structure of NtChiV in a complex with (GlcNAc)(4), in which Trp190 is exposed to the solvent and involved in face-to-face stacking interaction with the +2 sugar, while Trp326 is buried inside but interacts with the -2 sugar through hydrophobicity. HPLC analysis of anomers of the enzymatic products suggested that Trp190 specifically recognizes the β-anomer of the +2 sugar. The strong effects of the Trp326 mutations on activity and stability suggest multiple roles of the residue in stabilizing the protein structure, in sugar residue binding at subsite -2, and probably in maintaining catalytic efficiency by providing a hydrophobic environment for proton donor Glu115.  相似文献   

7.
I Matsui  K Ishikawa  S Miyairi  S Fukui  K Honda 《Biochemistry》1992,31(22):5232-5236
The 210th lysine (K) residue in the Saccharomycopsis alpha-amylase (Sfamy) molecule was replaced by arginine (R) and asparagine (N) residues by site-directed mutagenesis. The influences of the replacements on the bond-cleavage pattern for several substrates were analyzed. Both mutant enzymes, K210R and K210N, cleave mainly the first glycosidic bond from the reducing end of maltotetraose (G4), while the native enzyme hydrolyzes mainly the second bond from the reducing end. We changed successfully the major cleavage point in the hydrolysis reaction of G4. The 8th subsite affinities of the K210R and K210N enzymes are calculated to be +2.52 and -0.01 kcal/mol, respectively, whereas that of the native enzyme is +3.32 kcal/mol as reported in the previous paper. These affinity values suggest that the K210 residue composes the 8th subsite, one of major subsites, and that a positively charged amino residue is necessary for the 8th subsite affinity. The K210N enzyme is found to be less active for short substrates like maltotetraose (G4) than for long substrates like amylose A (approximately G18). The reduced catalytic activity specifically for the short substrates is also attributable to the remarkable decrease in the affinity of the 8th subsite.  相似文献   

8.
Tryptophan residues located in the substrate-binding cleft of a class V chitinase from Nicotiana tabacum (NtChiV) were mutated to alanine and phenylalanine (W190F, W326F, W190F/W326F, W190A, W326A, and W190A/W326A), and the mutant enzymes were characterized to define the role of the tryptophans. The mutations of Trp326 lowered thermal stability by 5–7 °C, while the mutations of Trp190 lowered stability only by 2–4 °C. The Trp326 mutations strongly impaired enzymatic activity, while the effects of the Trp190 mutations were moderate. The experimental data were rationalized based on the crystal structure of NtChiV in a complex with (GlcNAc)4, in which Trp190 is exposed to the solvent and involved in face-to-face stacking interaction with the +2 sugar, while Trp326 is buried inside but interacts with the ?2 sugar through hydrophobicity. HPLC analysis of anomers of the enzymatic products suggested that Trp190 specifically recognizes the β-anomer of the +2 sugar. The strong effects of the Trp326 mutations on activity and stability suggest multiple roles of the residue in stabilizing the protein structure, in sugar residue binding at subsite ?2, and probably in maintaining catalytic efficiency by providing a hydrophobic environment for proton donor Glu115.  相似文献   

9.
10.
Sasaki C  Vårum KM  Itoh Y  Tamoi M  Fukamizo T 《Glycobiology》2006,16(12):1242-1250
Sugar recognition specificities of class III (OsChib1a) and class I (OsChia1cDeltaChBD) chitinases from rice, Oryza sativa L., were investigated by analyzing (1)H- and (13)C-nuclear magnetic resonance spectra of the enzymatic products from partially N-acetylated chitosans. The reducing end residue of the enzymatic products obtained by the class III enzyme was found to be exclusively acetylated, whereas both acetylated and deacetylated units were found at the nearest neighbor to the reducing end residue. Both acetylated and deacetylated units were also found at the nonreducing end residue and its nearest neighbor of the class III enzyme products. Thus, only subsite (-1) among the contiguous subsites (-2) to (+2) of the class III enzyme was found to be specific to an acetylated residue. For the class I enzyme, the reducing end residue was preferentially acetylated, although the specificity was not absolute. The nearest neighbor to the acetylated reducing end residue was specifically acetylated. Moreover, the nonreducing end residue produced by the class I enzyme was exclusively acetylated, although there was a low but significant preference for deacetylated units at the nearest neighbor to the nonreducing end. These results suggest that the three contiguous subsites (-2), (-1), and (+1) of the class I enzyme are specific to three consecutive GlcNAc residues of the substrate. In rice plants, the target of the class I enzyme might be a consecutive GlcNAc sequence probably in the cell wall of fungal pathogen, whereas the class III enzyme might act toward an endogenous complex carbohydrate containing GlcNAc residue.  相似文献   

11.
The reaction pattern of an extracellular chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum ATCC 56676, was investigated by use of chitooligosaccharides [(GlcNAc)(n)(), n = 3-6] and partially N-deacetylated chitooligosaccharides as substrates. When 0.5% of (GlcNAc)(n)() was deacetylated, the corresponding monodeacetylated products were initially detected without any processivity, suggesting the involvement of a multiple-chain mechanism for the deacetylation reaction. The structural analysis of these first-step products indicated that the chitin deacetylase strongly recognizes a sequence of four N-acetyl-D-glucosamine (GlcNAc) residues of the substrate (the subsites for the four GlcNAc residues are defined as -2, -1, 0, and +1, respectively, from the nonreducing end to the reducing end), and the N-acetyl group in the GlcNAc residue positioned at subsite 0 is exclusively deacetylated. When substrates of a low concentration (100 microM) were deacetylated, the initial deacetylation rate for (GlcNAc)(4) was comparable to that of (GlcNAc)(5), while deacetylation of (GlcNAc)(3) could not be detected. Reaction rate analyses of partially N-deacetylated chitooligosaccharides suggested that subsite -2 strongly recognizes the N-acetyl group of the GlcNAc residue of the substrate, while the deacetylation rate was not affected when either subsite -1 or +1 was occupied with a D-glucosamine residue instead of GlcNAc residue. Thus, the reaction pattern of the chitin deacetylase is completely distinct from that of a Zygomycete, Mucor rouxii, which produces a chitin deacetylase for accumulation of chitosan in its cell wall.  相似文献   

12.
To investigate the functional role of subsites E and F in lysozyme catalysis, Asn37 of hen egg-white lysozyme (HEL), which is postulated to participate in sugar residue binding at the right-sided subsite F through hydrogen bonding, was replaced by Ser or Gly by site-directed mutagenesis. The mutations of Asn37 neither significantly affected the binding constant for chitotriose nor the enzymatic activity toward the substrate glycol chitin. However, kinetic analysis with the substrate N-acetylglucosamine pentamer, (GlcNAc)(5), revealed that the conversion of Asn37 to Gly decreased the binding free energies for subsites E and F, while the conversion to Ser increased the substrate affinity at subsite F. It was further found that the rate constant of transglycosylation was reduced by these mutations. These results suggest that Asn37 is involved not only in substrate binding at subsite F but also in transglycosylation activity. No remarkable change in the tertiary structure except the side chain of the 37th residue was detected on X-ray analysis of the mutant proteins, indicating that the alterations in the enzymatic function between the wild type and mutant enzymes depend on limited structural change around the substitution site. It is thus speculated that the slight conformational difference in the side chain of position 37 may affect the substrate and acceptor binding at subsites E and F, leading to lower the efficiency of the transglycosylation activities of the mutant proteins.  相似文献   

13.
The role of binding subsite A, located at the terminal of the six binding subsites of hen egg-white lysozyme, in substrate binding and catalytic reactions was investigated by kinetic studies using a chemical modification method. Computer simulation showed that, although subsite A participates in the binding of the substrate, a decrease in the affinity of subsite A to the sugar residue does not cause a lowering of the rate of substrate consumption but changes the mode of the reaction by changing the distribution of the products formed. The binding free energies of subsites for Asp-101-modified lysozymes were estimated by data-fitting from the experimental time-courses. The contribution of Asp-101 in hen egg-white lysozyme to the substrate binding at subsite A was estimated to correspond to a binding free energy of about -3 kJ/mol, 30% of the total binding free energy of subsite A. Modification of Asp-101 affected not only the binding free energy of subsite A but also that of subsite C.  相似文献   

14.
To assess the subsites involved in substrate binding in Aspergillus niger endopolygalacturonase II, residues located in the potential substrate binding cleft stretching along the enzyme from the N to the C terminus were subjected to site-directed mutagenesis. Mutant enzymes were characterized with respect to their kinetic parameters using polygalacturonate as a substrate and with respect to their mode of action using oligogalacturonates of defined length (n = 3-6). In addition, the effect of the mutations on the hydrolysis of pectins with various degrees of esterification was studied. Based on the results obtained with enzymes N186E and D282K it was established that the substrate binds with the nonreducing end toward the N terminus of the enzyme. Asn(186) is located at subsite -4, and Asp(282) is located at subsite +2. The mutations D183N and M150Q, both located at subsite -2, affected catalysis, probably mediated via the sugar residue bound at subsite -1. Tyr(291), located at subsite +1 and strictly conserved among endopolygalacturonases appeared indispensable for effective catalysis. The mutations E252A and Q288E, both located at subsite +2, showed only slight effects on catalysis and mode of action. Tyr(326) is probably located at the imaginary subsite +3. The mutation Y326L affected the stability of the enzyme. For mutant E252A, an increased affinity for partially methylesterified substrates was recorded. Enzyme N186E displayed the opposite behavior; the specificity for completely demethylesterified regions of substrate, already high for the native enzyme, was increased. The origin of the effects of the mutations is discussed.  相似文献   

15.
β-N-acetyl-D-hexosaminidase has been postulated to have a specialized function. However, the structural basis of this specialization is not yet established. OfHex1, the enzyme from the Asian corn borer Ostrinia furnacalis (one of the most destructive pests) has previously been reported to function merely in chitin degradation. Here the vital role of OfHex1 during the pupation of O. furnacalis was revealed by RNA interference, and the crystal structures of OfHex1 and OfHex1 complexed with TMG-chitotriomycin were determined at 2.1 ?. The mechanism of selective inhibition by TMG-chitotriomycin was related to the existence of the +1 subsite at the active pocket of OfHex1 and a key residue, Trp(490), at this site. Mutation of Trp(490) to Ala led to a 2,277-fold decrease in sensitivity toward TMG-chitotriomycin as well as an 18-fold decrease in binding affinity for the substrate (GlcNAc)(2). Although the overall topology of the catalytic domain of OfHex1 shows a high similarity with the human and bacterial enzymes, OfHex1 is distinguished from these enzymes by large conformational changes linked to an "open-close" mechanism at the entrance of the active site, which is characterized by the "lid" residue, Trp(448). Mutation of Trp(448) to Ala or Phe resulted in a more than 1,000-fold loss in enzyme activity, due mainly to the effect on k(cat). The current work has increased our understanding of the structure-function relationship of OfHex1, shedding light on the structural basis that accounts for the specialized function of β-N-acetyl-D-hexosaminidase as well as making the development of species-specific pesticides a likely reality.  相似文献   

16.
Dextran glucosidase from Streptococcus mutans (SMDG) and Bacillus oligo-1,6-glucosidases, members of glycoside hydrolase family 13 enzymes, have the high sequence similarity. Each of them is specific to alpha-1,6-glucosidic linkage at the non-reducing end of substrate to liberate glucose. The activities toward long isomaltooligosaccharides were different in both enzymes, in which SMDG and oligo-1,6-glucosidase showed high and low activities, respectively. We determined the structural elements essential for high activity toward long-chain substrate. From conformational comparison between SMDG and B. cereus oligo-1,6-glucosidase (three-dimensional structure has been solved), Trp238 and short beta-->alpha loop 4 of SMDG were considered to contribute to the high activity to long-chain substrate. W238A had similar kcat/Km value for isomaltotriose to that for isomaltose, suggesting that the affinity of subsite +2 was decreased by Trp238 replacement. Trp238 mutants as well as the chimeric enzyme having longer beta-->alpha loop 4 of B. subtilis oligo-1,6-glucosidase showed lower preference for long-chain substrates, indicating that both Trp238 and short beta-->alpha loop 4 were important for high activity to long-chain substrates.  相似文献   

17.
The structure of the complex between a catalytically compromised family 10 xylanase and a xylopentaose substrate has been determined by X-ray crystallography and refined to 3.2 A resolution. The substrate binds at the C-terminal end of the eightfold betaalpha-barrel of Pseudomonas fluorescens subsp. cellulosa xylanase A and occupies substrate binding subsites -1 to +4. Crystal contacts are shown to prevent the expected mode of binding from subsite -2 to +3, because of steric hindrance to subsite -2. The loss of accessible surface at individual subsites on binding of xylopentaose parallels well previously reported experimental measurements of individual subsites binding energies, decreasing going from subsite +2 to +4. Nine conserved residues contribute to subsite -1, including three tryptophan residues forming an aromatic cage around the xylosyl residue at this subsite. One of these, Trp 313, is the single residue contributing most lost accessible surface to subsite -1, and goes from a highly mobile to a well-defined conformation on binding of the substrate. A comparison of xylanase A with C. fimi CEX around the +1 subsite suggests that a flatter and less polar surface is responsible for the better catalytic properties of CEX on aryl substrates. The view of catalysis that emerges from combining this with previously published work is the following: (1) xylan is recognized and bound by the xylanase as a left-handed threefold helix; (2) the xylosyl residue at subsite -1 is distorted and pulled down toward the catalytic residues, and the glycosidic bond is strained and broken to form the enzyme-substrate covalent intermediate; (3) the intermediate is attacked by an activated water molecule, following the classic retaining glycosyl hydrolase mechanism.  相似文献   

18.
The kinetic behavior of chitinase A1 from Bacillus circulans WL-12 was investigated using the novel fluorogenic substrates, N-deacetylated 4-methylumbelliferyl chitobiosides [GlcN-GlcNAc-UMB (2), GlcNAc-GlcN-UMB (3), and (GlcN)(2)-UMB (4)], and the results were compared with those obtained using 4-methylumbelliferyl N, N'-diacetylchitobiose [(GlcNAc)(2)-UMB (1)] as the substrate. The chitinase did not release the UMB moiety from compound 4, but successfully released UMB from the other substrates. k(cat)/K(m) values determined from the releasing rate of the UMB moiety were: 145.3 for 1, 8.3 for 2, and 0.1 s(-1) M(-1) for 3. The lack of an N-acetyl group at subsite (-1) reduced the activity to a level 0.1% of that obtained with compound 1, while the absence of the N-acetyl group at subsite (-2) reduced the relative activity to 5.7%. These observations strongly support the theory that chitinase A1 catalysis occurs via a 'substrate-assisted' mechanism. Using these novel fluorogenic substrates, we were able to quantitatively evaluate the recognition specificity of subsite (-2) toward the N-acetyl group of the substrate sugar residue. The (-2) subsite of chitinase A1 was found to specifically recognize an N-acetylated sugar residue, but this specificity was not as strict as that found in subsite (-1).  相似文献   

19.
The interactions of deoxy derivatives of GlcNAc, 6-deoxy-GlcNAc, and 3-deoxy-GlcNAc with hen egg-white lysozyme [EC 3.2.1.17] were studied at various pH's by measuring the changes in the circular dichroic (CD) band at 295 nm. It was shown that 6-deoxy-GlcNAc and 3-deoxy-GlcNAc bind at subsite C of lysozyme and compete with GlcNAc. The pH dependence of the binding constant of 6-deoxy-GlcNAc was the same as that of GlcNAc. On the other hand, the binding constants of 3-deoxy-GlcNAc were 3--10 times smaller than those of GlcNAc in the pH range from 3 to 9. X-ray crystallographic studies show that O(6) and O(3) of GlcNAc at subsite C are hydrogen-bonded to the indole NH's of Trp 62 and Trp 63, respectively, but the above results indicate that Trp 63, not Trp 62, is important for the interaction of GlcNAc with lysozyme.  相似文献   

20.
Enzymatic features that determine transglycosylating activity have been investigated through site-directed mutagenesis studies on two family 18 chitinases, ChiA and ChiB from Serratia marcescens, with inherently little transglycosylation activity. The activity was monitored for the natural substrate (GlcNAc)(4) using mass spectrometry and HPLC. Mutation of the middle Asp in the diagnostic DxDxE motif, which interacts with the catalytic Glu during the catalytic cycle, yielded the strongly transglycosylating mutants ChiA-D313N and ChiB-D142N, respectively. Mutation of the same Asp(313/142) to Ala or the mutation of Asp(311/140) to either Asn or Ala had no or much smaller effects on transglycosylating activity. Mutation of Phe(396) in the +2 subsite of ChiA-D313N to Trp led to a severalfold increase in transglycosylation rate while replacement of aromatic residues with Ala in the aglycon (sugar acceptor-binding) subsites of ChiA-D313N and ChiB-D142N led to a clear reduction in transglycosylating activity. Taken together, these results show that the transglycosylation properties of family 18 chitinases may be manipulated by mutations that affect the configuration of the catalytic machinery and the affinity for sugar acceptors. The hypertransglycosylating mutant ChiA-D313N-F396W may find applications for synthetic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号