首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mechanism of Mitochondrial Mutation in Yeast   总被引:2,自引:0,他引:2  
THE yeast Saccharomyces cerevisiae can mutate to the respiratory-incompetent petite colony form. The mutation is probably caused by damage to, or loss of, the yeast's mitochondrial DNA, for petite mutants often lack mitochondrial DNA, possess it in abnormal amounts or with abnormal buoyant density1. Some of the agents, such as acrifiavine or ethidium bromide, which induce the petite mutation interfere with mitochondrial DNA synthesis2,3 whereas ethidium bromide also causes or permits degradation of Saccharomyces cerevisiae mitochondrial DNA2,3. We have observed that nalidixate (50 µg/ml.), an inhibitor of DNA synthesis, can prevent or delay petite mutation induced by ethidium bromide4. A similar effect has been observed by Hollenberg and Borst using a higher nalidixate concentration5. We have investigated the mechanism of this effect. A diploid prototrophic strain of Saccharomyces cerevisiae (NCYC 239) was used throughout.  相似文献   

3.
Ethanol proved to be a strong mutagenic agent of Saccharomyces mitochondrial DNA. Other active membrane solvents, such as tert-butanol, isopropanol, and sodium dodecyl sulfate, also turned out to be powerful petite mutation [rho-] inducers. Mutants defective in ergosterol synthesis (erg mutants) showed an extremely high frequency of spontaneous petite cells, suggesting that mitochondrial membrane alterations that were caused either by changes in its composition, as in the erg mutants, or by the effects of organic solvents resulted in an increase in the proportion of petite mutants. Wine yeast strains were generally more tolerant to the mutagenic effects of alcohols on mitochondrial DNA and more sensitive to the effect of sodium dodecyl sulfate than laboratory strains. However, resistance to petite mutation formation in laboratory strains was increased by mitochondrial transfer from alcohol-tolerant wine yeasts. Hence, the stability of the [rho+] mitochondrial DNA in either the presence or absence of solvents depends in part on the nature of the mitochondrial DNA itself. The low frequency of petite mutants found in wine yeast-laboratory yeast hybrids and the fact that the high frequency of petite mutants of a particular wine spore segregated meiotically indicated that many nuclear genes also play an important role in the mitochondrial genome in both the presence and absence of membrane solvents.  相似文献   

4.
Induction of petite yeast mutants by membrane-active agents.   总被引:1,自引:1,他引:0       下载免费PDF全文
J Jimnez  E Longo    T Benítez 《Applied microbiology》1988,54(12):3126-3132
Ethanol proved to be a strong mutagenic agent of Saccharomyces mitochondrial DNA. Other active membrane solvents, such as tert-butanol, isopropanol, and sodium dodecyl sulfate, also turned out to be powerful petite mutation [rho-] inducers. Mutants defective in ergosterol synthesis (erg mutants) showed an extremely high frequency of spontaneous petite cells, suggesting that mitochondrial membrane alterations that were caused either by changes in its composition, as in the erg mutants, or by the effects of organic solvents resulted in an increase in the proportion of petite mutants. Wine yeast strains were generally more tolerant to the mutagenic effects of alcohols on mitochondrial DNA and more sensitive to the effect of sodium dodecyl sulfate than laboratory strains. However, resistance to petite mutation formation in laboratory strains was increased by mitochondrial transfer from alcohol-tolerant wine yeasts. Hence, the stability of the [rho+] mitochondrial DNA in either the presence or absence of solvents depends in part on the nature of the mitochondrial DNA itself. The low frequency of petite mutants found in wine yeast-laboratory yeast hybrids and the fact that the high frequency of petite mutants of a particular wine spore segregated meiotically indicated that many nuclear genes also play an important role in the mitochondrial genome in both the presence and absence of membrane solvents.  相似文献   

5.
Summary The action of ethidium bromide and berenil on the mitochondrial genome of Saccharomyces cerevisiae has been compared in three types of study: (i) early kinetics (up to 4 h) of petite induction by the drugs in the presence or absence of sodium dodecyl sulphate; (ii) genetic consequences of long-term (8 cell generations) exposure to the drugs; (iii) inhibition of mitochondrial DNA replication, both in whole cells and in isolated mitochondria.The results have been interpreted as follows. Firstly, the early events in petite induction differ markedly for the two drugs, as indicated by differences in the short-term kinetics. After some stage a common pathway is apparently followed because the composition of the population of petite cells induced after long-term exposure are very similar for both ethidium bromide and berenil. Secondly, both drugs probably act at the same site to inhibit mitochondrial DNA replication, in view of the fact that a petite strain known to be resistant to ethidium bromide inhibition of mitochondrial DNA replication was found to have simultaneously acquired resistance to berenil. From consideration of the drug concentrations needed to inhibit mitochondrial DNA replication in vivo and in vitro it is suggested that in vivo permeability barriers impede the access of ethidium bromide to the site of inhibition of mitochondrial DNA replication, whilst access of berenil to this site is facilitated. The site at which the drugs act to inhibit mitochondrial DNA replication may be different from the site(s) involved in early petite induction. Binding of the drugs at the latter site(s) is considered to initiate a series of events leading to the fragmentation of yeast mitochondrial DNA and petite induction.  相似文献   

6.
Propidium iodide treatment of yeast under resting conditions resulted in cells which grew as sectored colonies comprised of both respiratory-deficient and -proficient progeny. Such treated cells also did not grow when plated initially on glycerol medium. These results suggested that propidium iodide produced reversible or transient lesions of the mitochondria within a single cell which interfered with function, but that recovery of mitochondrial competence could occur during growth of early progeny. Ethidium bromide, in contrast, provoked irreversible loss of respiratory function. Propidium may prove to be a useful agent to investigate the initial molecular events in petite mutation induction in yeast.  相似文献   

7.
DNA is susceptible of being damaged by chemicals, UV light or gamma irradiation. Nuclear DNA damage invokes both a checkpoint and a repair response. By contrast, little is known about the cellular response to mitochondrial DNA damage. We designed an experimental system that allows organelle-specific DNA damage targeting in Saccharomyces cerevisiae. DNA damage is mediated by a toxic topoisomerase I allele which leads to the formation of persistent DNA single-strand breaks. We show that organelle-specific targeting of a toxic topoisomerase I to either the nucleus or mitochondria leads to nuclear DNA damage and cell death or to loss of mitochondrial DNA and formation of respiration-deficient ‘petite’ cells, respectively. In wild-type cells, toxic topoisomerase I–DNA intermediates are formed as a consequence of topoisomerase I interaction with camptothecin-based anticancer drugs. We reasoned that targeting of topoisomerase I to the mitochondria of top1Δ cells should lead to petite formation in the presence of camptothecin. Interestingly, camptothecin failed to generate petite; however, its derivative topotecan accumulates in mitochondria and induces petite formation. Our findings demonstrate that drug modifications can lead to organelle-specific DNA damage and thus opens new perspectives on the role of mitochondrial DNA-damage in cancer treatment.  相似文献   

8.
9.
Chen M  Sandoval H  Wang J 《Autophagy》2008,4(7):926-928
Accumulating evidence suggests that autophagy can be selective in the clearance of organelles in yeast and in mammalian cells. We have observed that the sequestration of mitochondria by autophagosomes was defective in reticulocytes in the absence of Nix. Nix is required for the dissipation of mitochondrial membrane potential (DeltaPsim) during erythroid maturation. Moreover, pharmacological agents that induce the loss of DeltaPsim can restore the sequestration of mitochondria by autophagosomes and promote mitochondrial clearance in Nix(-/-) erythroid cells. Our data suggest that mitochondrial depolarization induces recognition and sequestration of mitochondria by autophagosomes. Elucidating the mechanisms underlying selective mitochondrial autophagy not only will help us to understand the mechanisms for erythroid maturation, but also may provide insights into mitochondrial quality control by autophagy in the protection against aging, cancer and neurodegenerative diseases.  相似文献   

10.
Mitochondrial DNA repair and aging   总被引:17,自引:0,他引:17  
The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.  相似文献   

11.
The 27,100 base-pair circular mitochondrial DNA from the yeast Kloeckera africana has been found to contain an inverted duplication spanning 8600 base-pairs. Sequences hybridizing to transfer RNAs and the large ribosomal RNA are present in the duplication; however, one end of this segment terminates in the large mitochondrial ribosomal RNA sequence so that at least 1000 base-pairs of the gene are not repeated. The large and small mitochondrial ribosomal RNAs have been shown to have lengths of 2700 and 1450 bases, respectively, and genes for these sequences are separated by a minimum of 1300 base-pairs and a maximum of 1750 base-pairs. Consequences of the large inverted duplication to mechanisms of the petite mutation are discussed in terms of previous hypotheses centred on intramolecular recombination in yeast mitochondrial DNA at sequences of homology or partial homology. Despite the long inverted duplication in K. africana mitochondrial DNA, this yeast has one of the lowest frequencies of spontaneous petite mutants amongst petite positive yeasts. One implication of these findings is that in this yeast intra-molecular mitochondrial DNA sequence homology may not be an important factor in the excision process leading to petite formation.  相似文献   

12.
Reactive oxygen species (ROS) have been implicated as one of the agents responsible for many neurodegenerative diseases. A critical target for ROS is DNA. Most oxidative stress-induced DNA damage in the nucleus and mitochondria is removed by the base excision repair pathway. Apn1 is a yeast enzyme in this pathway which possesses a wider substrate specificity and greater enzyme activity than its mammalian counterpart for removing DNA damage, making it a good therapeutic candidate. For this study we targeted Apn1 to mitochondria in a neuronal cell line derived from the substantia nigra by using a mitochondrial targeting signal (MTS) in an effort to hasten the removal of DNA damage and thereby protect these cells. We found that following oxidative stress, mitochondrial DNA (mtDNA) was repaired more efficiently in cells containing Apn1 with the MTS than controls. There was no difference in nuclear repair. However, cells that expressed Apn1 without the MTS showed enhanced repair of both nuclear and mtDNA. Both Apn1-expressing cells were more resistant to cell death following oxidative stress compared with controls. Therefore, these results reveal that the expression of Apn1 in neurons may be of potential therapeutic benefit for treating patients with specific neurodegenerative diseases.  相似文献   

13.
Mitochondrial cytopathies are a heterogeneous group of systemic disorders caused by mutations in mitochondrial or nuclear genome. The review presents some data on pathogenic mutations in mitochondrial DNA leading to the imbalance in the oxidation phosphorylation processes and energy metabolism in the cells and eventually to the development of mitochondrial cytopathy. The pathways of medicated correction are examined, which are aimed at obtaining optimal energy efficiency of mitochondria with impaired functions, increase of the efficiency of energy metabolism in the tissues, as well as prevention of mitochondrial membrane damage by free radicals using antioxidants and membrane protectors. A conclusion is drawn on the inefficiency of currently used therapeutic strategies and the necessity of new approaches, which can be gene therapy of mitochondrial diseases. Some modern methods for gene defects correction, capable of restoring or removing the damaged gene, expressing full gene product, or blocking the mutant or strange genes work are analyzed. It is shown that the described approaches to the gene therapy of human mitochondrial diseases demand the introduction of foreign sequences into nuclear or mitochondrial genome of a living person, which completely excludes their practical application because of the uncertainty of the outcome. A perspective approach in solving this problem may be a creation of a system allowing the correction of defect genes without introducing synthetic nucleotides into the human genome. Phenotypic selection combined with a capacity of homologous recombination, artificially imparted to mitochondria of yeast Yarrowia lipolytica, allows for replication of intact human mitochondrial DNA in yeast mitochondria, supporting a full-size native human mitochondrial DNA in the yeast cells and eliminating pathogenic mutations by means of standard sitedirected PCR mutagenesis. After the correction in the Y. lipolytica cells, copies of mitochondrial DNA of an individual patient may be returned to him using the transfection of mesenchymal stromal cells followed by selection of transfectants grown in minimal culture media, in which the cells with higher respiratory mitochondrial activity will gain the advantage.  相似文献   

14.
Mitochondria damage checkpoint in apoptosis and genome stability   总被引:3,自引:0,他引:3  
  相似文献   

15.
《Autophagy》2013,9(7):926-928
Accumulating evidence suggests that autophagy can be selective in the clearance of organelles in yeast and in mammalian cells. We have observed that the sequestration of mitochondria by autophagosomes was defective in reticulocytes in the absence of Nix. Nix is required for the dissipation of mitochondrial membrane potential (ΔΨm) during erythroid maturation. Moreover, pharmacological agents that induce the loss of ΔΨm can restore the sequestration of mitochondria by autophagosomes and promote mitochondrial clearance in Nix-/- erythroid cells. Our data suggest that mitochondrial depolarization induces recognition and sequestration of mitochondria by autophagosomes. Elucidating the mechanisms underlying selective mitochondrial autophagy not only will help us to understand the mechanisms for erythroid maturation, but also may provide insights into mitochondrial quality control by autophagy in the protection against aging, cancer, and neurodegenerative diseases.

Addendum to: Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454:232-5.  相似文献   

16.
17.
The phospholipid composition of various strains of the yeast, Saccharomyces cerevisiae, and several of their derived mitochondrial mutants grown under conditions designed to induce variations in the complement of mitochondrial membranes has been examined. Wild type and petite (cytoplasmic respiratory deficient) yeasts were fractionated into various subcellular fractions, which were monitored by electron microscopy and analyzed for cytochrome oxidase (in wild type) and phospholipid composition. 90% or more of the phospholipid, cardiolipin was found in the mitochondrial membranes of wild type and petite yeast. Cardiolipin content differed markedly under various growth conditions. Stationary yeast grown in glucose had better developed mitochondria and more cardiolipin than repressed log phase yeast. Aerobic yeast contained more cardiolipin than anaerobic yeast. Respiration-deficient cytoplasmic mitochondrial mutants, both suppressive and neutral, contained less cardiolipin than corresponding wild types. A chromosomal mutant lacking respiratory function had normal cardiolipin content. Log phase cells grown in galactose and lactate, which do not readily repress the development of mitochondrial membranes, contained as much cardiolipin as stationary phase cells grown in glucose. Cytoplasmic mitochondrial mutants respond to changes in the glucose concentration of the growth medium by variations in their cardiolipin content in the same way as wild type yeast does under similar growth conditions. It is concluded that cardiolipin content of yeast is correlated with, and is a good indicator of, the state of development of mitochondrial membrane.  相似文献   

18.
Heat shock protein Hsp104 of Saccharomyces cerevisiae functions as a protector of cells against heat stress. When yeast are grown in media containing nonfermentable carbon sources, the constitutive level of this protein increases, which suggests an association between the expression of Hsp104 and yeast energy metabolism. In this work, it is shown that distortions in the function of mitochondria appearing as a result of mutation petite or after exposure of cells to the mitochondrial inhibitor sodium azide reduce the induction of Hsp104 synthesis during heat shock. Since the addition of sodium azide suppressed the formation of induced thermotolerance in the parent type and in mutant hsp104, the expression of gene HSP104 and other stress genes during heat shock is apparently regulated by mitochondria.  相似文献   

19.
Mutants of Saccharomyces cerevisiae deficient in mitochondrial aldehyde dehydrogenase (ALDH) activity were isolated by chemical mutagenesis with ethyl methanesulfonate. The mutants were selected by their inability to grow on ethanol as the sole carbon source. The ALDH mutants were distinguished from alcohol dehydrogenase mutants by an aldehyde indicator plate test and by immunoscreening. The ALDH gene was isolated from a yeast genomic DNA library on a 5.7-kb insert of a recombinant DNA plasmid by functional complementation of the aldh mutation in S. cerevisiae. An open reading frame which specifies 533 codons was found within the 2.0-kb BamHI-BstEII fragment in the 5.7-kb genomic insert which can encode a protein with a molecular weight of 58,630. The N-terminal portion of the protein contains many positively charged residues which may serve as a signal sequence that targets the protein to the mitochondria. The amino acid sequence of the proposed mature yeast enzyme shows 30% identity to each of the known ALDH sequences from eukaryotes or prokaryotes. The amino acid residues corresponding to mammalian cysteine 302 and glutamates 268 and 487, implicated to be involved at the active site, were conserved. S. cerevisiae ALDH was found to be localized in the mitochondria as a tetrameric enzyme. Thus, that organelle is responsible for acetaldehyde oxidation, as was found in mammalian liver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号