首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal Response of Grasslands to Climate Change on the Tibetan Plateau   总被引:1,自引:0,他引:1  

Background

Monitoring vegetation dynamics and their responses to climate change has been the subject of considerable research. This paper aims to detect change trends in grassland activity on the Tibetan Plateau between 1982 and 2006 and relate these to changes in climate.

Methodology/Principal Findings

Grassland activity was analyzed by evaluating remotely sensed Normalized Difference Vegetation Index (NDVI) data collected at 15-day intervals between 1982 and 2006. The timings of vegetation stages (start of green-up, beginning of the growing season, plant maturity, start of senescence and end of the growing season) were assessed using the NDVI ratio method. Mean NDVI values were determined for major vegetation stages (green-up, fast growth, maturity and senescence). All vegetation variables were linked with datasets of monthly temperature and precipitation, and correlations between variables were established using Partial Least Squares regression. Most parts of the Tibetan Plateau showed significantly increasing temperatures, as well as clear advances in late season phenological stages by several weeks. Rainfall trends and significant long-term changes in early season phenology occurred on small parts of the plateau. Vegetation activity increased significantly for all vegetation stages. Most of these changes were related to increasing temperatures during the growing season and in some cases during the previous winter. Precipitation effects appeared less pronounced. Warming thus appears to have shortened the growing season, while increasing vegetation activity.

Conclusions/Significance

Shortening of the growing season despite a longer thermally favorable period implies that vegetation on the Tibetan Plateau is unable to exploit additional thermal resources availed by climate change. Ecosystem composition may no longer be well attuned to the local temperature regime, which has changed rapidly over the past three decades. This apparent lag of the vegetation assemblage behind changes in climate should be taken into account when projecting the impacts of climate change on ecosystem processes.  相似文献   

2.
Knowledge of the leaf anatomy of grassland plants is crucial for understanding how these plants adapt to the environment. Tibetan alpine grasslands and Inner Mongolian temperate grasslands are two major grassland types in northern China. Tibetan alpine grasslands occur in high-altitude regions where the low temperatures limit plant growth. Inner Mongolian temperate grasslands are found in arid regions where moisture is the limiting factor. Few comparative studies concerning the leaf anatomy of grassland plants of the Tibetan Plateau and Inner Mongolian Plateau have been conducted. We examined leaf characteristics at 71 sites and among 65 species, across the alpine grasslands of the Tibetan Plateau and the temperate grasslands of the Inner Mongolian Plateau. We compared the leaf structures of plants with different life forms and taxonomies, and their adaptation to arid or cold environments. We explored relationships among leaf features and the effects of climatic factors (i.e., growing season temperature and precipitation) on leaf characteristics. Our results showed that (i) there were significant differences in leaf anatomy between Tibetan alpine and Inner Mongolian temperate grasslands. Except for mesophyll cell density, the values obtained for thickness of leaf tissue, surface area and volume of mesophyll cells were larger on the Tibetan Plateau than on the Inner Mongolian Plateau. (ii) Within the same family or genus, leaf anatomy showed significant differences between two regions, and trends were consistent with those of whole species. (iii) Leaf anatomy of woody and herbaceous plants also showed significant differences between the regions. Except for mesophyll cell density, the values obtained for the thickness of leaf tissue, and the surface area and volume of mesophyll cells were larger in herbaceous than in woody plants. (iv) Leaf anatomical traits changed accordingly. Total leaf thickness, thicknesses of lower and upper epidermal cells, and surface area and volume of mesophyll cells were positively correlated, while mesophyll cell density was negatively associated with those traits. (v) Growing season temperature had stronger effects on leaf anatomy than growing season precipitation. Although the communities in Tibetan and Inner Mongolian grasslands were similar in appearance, leaf anatomy differed; this was probably due to the combined effects of evolutionary adaptation of plants to environment and environmental stress induced by climatic factors.  相似文献   

3.
综述了近五十年来青藏高原气候和高寒草地的变化趋势,阐述了气候变化对高寒草地的可能影响。气候变化主要通过水、热过程及其诱导的环境变化对青藏高原高寒草地产生显著的影响。主要过程包括:气候变化对气候带、植被带、植物、植物群落、农业生产以及生态系统固碳潜力等的影响。从目前的观测和研究结果来看,有关青藏高原气候变化及其对高寒草地的可能影响都还很难得出一致的结论。因此,如何科学评价气候变化及其预测和评价对高寒草地结构和功能的潜在影响,以及如何将已经发生的变化纳入到全球变化模型或评价体系中,以便更加精确地评估气候变化的长期影响,将成为必须要回答的关键科学问题。  相似文献   

4.
降水总量、分配方式及其发生时间共同决定了青藏高原植被生长的水分条件,而降水利用效率(PUE,地上生产力与降水量的比值)是评估降水与植被生产力关系的有效指标.本研究以藏北当雄高寒草原化草甸为研究对象,利用多年生物量采样数据与同期遥感EVI植被指数建立线性模型,反演了2000-2016年地上净初级生产力(ANPP),结合同时期气象数据,以生长季降水量(GSP)表征降水总体状况,改进的降水集度指标(PCI)表征生长季降水分配,降水重心(PC)表征降水集中时间,并结合生长季均温(GST),利用结构方程分析了气候因子对当雄草地降水利用效率和地上生产力的影响.结果表明: 当雄草地ANPP主要受生长季降水影响,GSP与ANPP呈显著正相关,而GST与PUE、ANPP无显著相关关系;PCI与PUE呈显著正相关,表明降水集中分布有利于PUE增加;PCI与ANPP相关的间接系数大于直接系数,表明PCI通过PUE影响ANPP;降水集中时间(PC)变化则对PUE和ANPP没有显著影响.在青藏高原显著的气候变暖背景下,降水量和降水集度的变化都将会对藏北高寒草地的地上生产力产生重要影响.  相似文献   

5.
The reproduction of the plateau pika (Ochotona curzoniae) was investigated in Guoluo District at an elevation of 4,000 m on the Qinghai–Tibetan plateau, China, from April 2007 to August 2008. Reproduction was seasonal, and the breeding season lasted from April to late June/early July. Adults produced two litters in each year, and the mean litter size, estimated by counting the number of embryos in utero, was 3.3 ± 0.1 (n = 52) in 2007 and 3.2 ± 0.1 (n = 66) in 2008. The timing of reproduction showed high inter-annual variation; lower precipitation and the concomitant delay in spring vegetation phenology may have retarded the onset of the breeding season in 2007 compared with 2008. The most frequent litter sizes were 3 and 4, which together comprised 71.2% and 83.3% of litters in May and June of 2007 and 2008, respectively. Compared with previous studies, reproduction was highly variable between geographic areas. Pikas produced between one and five litters per year in different regions of the plateau over different breeding seasons. This geographic and inter-annual variation appeared to be associated with the duration of plant growth at each site, suggesting that plateau pikas adjust the length of their breeding season to match the period when sufficient energy is available to support the high energy demands of reproduction.  相似文献   

6.
玉龙雪山3个针叶树种在海拔上限的径向生长及气候响应   总被引:1,自引:0,他引:1  
张卫国  肖德荣  田昆  陈广磊  和荣华  张贇 《生态学报》2017,37(11):3796-3804
树木生长对气候变化的响应是国内外研究的热点。选择滇西北高原玉龙雪山海拔分布上限3个主要树种(长苞冷杉(Abies georgei)、丽江云杉(Picea likiangensis)和大果红杉(Larix potaninii Batal var.macrocarpa Law)),对其径向生长特征进行研究,构建差值年表,并分析其与温度和降水的相互关系。研究结果表明:(1)温度和降水均为玉龙雪山海拔上限树木生长的主要影响因子,但不同树种响应的时期和关系存在差异;(2)大果红杉生长主要受限于生长初期(5—6月)的水热条件,主要表现为与当年5月、6月以及生长初期(5—6月)的平均温呈显著正相关,以及与当年5月、6月以及生长初期的降水呈显著负相关;(3)长苞冷杉生长主要受限于生长初期(5—6月)的水分条件,表现为显著负相关,同时生长盛期(7—8月)温度的升高有利于其径向生长;(4)丽江云杉的生长则主要受限于生长季开始以前的气候条件,与上年12月以及当年5月的平均温呈显著负相关,与当年1月的降水呈显著正相关。本研究的结果可为气候变化对滇西北高原树木生长影响的研究提供参考,并为该地区历史气候重建提供科学基础。  相似文献   

7.
The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau–lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature‐related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area.  相似文献   

8.
青藏高原植被覆盖时空变化及其对气候因子的响应   总被引:12,自引:0,他引:12  
卓嘎  陈思蓉  周兵 《生态学报》2018,38(9):3208-3218
研究青藏高原植被覆盖时空分布特征对加深气候变化的认识及生态环境保护具有重要的生态价值和现实意义。利用2000—2016年MODIS NDVI 1km/月分辨率数据以及气象观测数据,采用最大合成法、趋势性分析以及相关分析方法,探讨了不同时间尺度青藏高原地区NDVI的分布特征及其与降水、气温的关系。结果表明:(1)青藏高原东南部植被状况明显好于西北部,植被覆盖的分布格局与区域水热条件的时空分布保持了较好的一致性;近17年来青藏高原植被覆盖改善的地区要比退化的地区面积大,严重退化的区域主要位于青藏高原西南部;青藏高原NDVI值在2000—2016年呈幅度较小的增加趋势。(2)除夏季降水量外,研究时段内其他季节降水量均呈增加趋势;气温均呈增加趋势,尤其以春季增加最为显著,整体上青藏高原气候呈现"暖湿化"趋势。总体上年降水量与年最大合成NDVI呈较好的正相关;年平均气温与年最大合成NDVI在高原东南部呈正相关,西南部呈负相关。降水量和热量条件均是高原植被生长的影响因素,降水与植被覆盖的影响较气温密切。  相似文献   

9.
藏北高原植被物候时空动态变化的遥感监测研究   总被引:9,自引:0,他引:9       下载免费PDF全文
利用遥感数据提取的植被物候格局及时空变化特征能很好地反映区域尺度上植被对全球变化的响应。目前关于青藏高原地区植被物候的少量报道基本上是基于物候站点的观测记录展开分析的。该文基于非对称高斯拟合算法重建了藏北高原2001-2010年的MODIS EVI (增强型植被指数)时间序列影像, 然后利用动态阈值法提取整个藏北高原2001-2010年植被覆盖的重要物候信息, 包括植被返青期、枯黄期与生长季长度, 分析了植被物候10年间平均状况的空间分异特征以及年际变化情况, 并结合站点观测记录分析了气温和降水对植被物候变化的影响, 结果表明: (1)藏北高原植被返青期在空间上表现出从东南到西北逐渐推迟的水平地带性与东南高山峡谷区的垂直地带性相结合的特征, 近60%区域的植被返青期提前, 特别是高山地区; (2)植被枯黄期的年际变化不太明显, 大部分地区都表现为自然的年际波动; (3)生长季长度的时空变化特征由植被返青期和枯黄期二者决定, 但主要受返青期提前影响, 大部分地区生长季长度延长; (4)研究区内不同气候区划植被物候的年际变化以那曲高山谷地亚寒带半湿润区和青南高原亚寒带半干旱区的植被返青期提前和生长季延长程度最为明显; (5)基于气象台站数据分析气候变化对物候的影响发现, 返青期提前及生长季延长主要受气温升高的影响, 与降水的关系尚不明确。  相似文献   

10.
受全球气候变化的影响,青藏高原在过去的几十年间整体上呈现暖湿化的趋势,相比于年际之间温度和降水的变化外,生长季和非生长季气候变化模式的差异可能会对生态系统产生更重要的影响,但相关的研究尚不充分。以青藏高原东部的高寒草甸为研究对象,基于2001年至2017年17年的野外观测数据,包括优势植物紫花针茅的高度、多度以及生物量、次优势物种洽草的生物量,结合生长季和非生长季平均温度和降水量的变化,通过线性回归以及结构方程模型,探究生长季/非生长季不对称气候变化对于青藏高原高寒草甸优势物种生物量稳定性的影响。研究结果表明:1)青藏高原东部年均温和年降水在过去的17年间显著增加,呈现暖湿化的趋势,但是非生长的降水却变化不明显;2)紫花针茅的高度、多度以及生物量在过去17年没有显著的趋势,但是洽草的生物量稳定性显著减少;3)非生长降水结合紫花针茅的高度、多度以及洽草的生物量稳定性促进了紫花针茅的生物量稳定性。研究结果可以为青藏高原高寒草甸在未来气候变化的背景下合理保护与利用提供科学依据。  相似文献   

11.
神祥金  张佳琦  吕宪国 《生态学报》2020,40(18):6259-6268
基于2000—2017年逐旬MODIS NDVI数据和逐月气温、降水数据,分析了青藏高原不同类型沼泽湿地植被生长季NDVI时空变化特征及其对气候变化的响应。研究结果表明:青藏高原沼泽植被生长季多年平均NDVI自西北向东南逐渐增加;沼泽植被生长季平均NDVI在2000—2017年总体呈现显著上升趋势 (0.010/10a) ,生长季NDVI呈上升趋势的面积占整个研究区面积的78.25%。青藏高原沼泽植被生长季NDVI与降水量总体上呈现弱的相关性,表明降水并不是影响该地区沼泽植被生长的主要因素。青藏高原沼泽植被生长主要受气温影响,气温升高能明显促进沼泽植被的生长。此外,首次发现白天和夜晚温度升高对青藏高原沼泽植被生长具有不对称性影响,其中夜晚增温对沼泽植被生长的促进效果更加显著。在全球白天和夜晚不对称增温的背景下,白天和夜晚温度对青藏高原沼泽植被的不对称影响应当引起重视,尤其是在利用模型模拟未来气候变化对该地区沼泽植被影响时。  相似文献   

12.
本文通过建立长白山阔叶红松林内雌雄异株植物山杨树轮宽度序列及标准化年表,分析不同气候条件下的生长差异及其与气候因子的关系,以期揭示性别因素对植株径向生长 气候因子关系的影响.结果表明: 不同气候条件下雌雄植株年径向生长速率存在显著差异,对气候因子的响应也有所不同.1980年以前,山杨雌株年均生长速率显著高于雄株,雌株与生长季末低温、上年生长季末和当年生长季降水量呈显著负相关,山杨雄株则与当年生长季温度呈显著正相关.1980年(含)以后,温度明显上升,尤其是最低温度,植株生长速率出现下降趋势,雌株生长速率显著低于雄株;雌株对低温变化更敏感,与上年生长季末低温呈显著负相关、与春季低温呈显著正相关,雄株与低温的相关关系均未达到显著水平.低温对长白山地区山杨雌株生长具有重要影响,在降水基本保持不变的条件下,低温的上升将明显抑制山杨雌株的生长,而对雄株影响不显著.  相似文献   

13.
高原鼠兔(Ochotona curzoniae)冬季自然死亡率   总被引:8,自引:5,他引:8  
以耳标观察法。1985年4-7月共捕标了样地内高原鼠兔(Ochotona curzoniae)幼鼠114只。到入冬前,死亡率为50.88%。第2胎出生的鼠死亡率明显地高于第1胎的死亡率。冬季死亡率呈现波动,入冬及开春时死亡率较高。鼠兔种群进入繁殖前期死亡率趋于零。初春样区存活标志鼠6只,经夏秋冬3季总计死亡率达94.74%。如按入冬时实有标志鼠计算,冬季死亡率为91.04%。  相似文献   

14.
Xu HJ  Yang XG  Wang WF  Xu C 《应用生态学报》2011,22(7):1817-1824
Based on the 1961-2007 ground observation data from 55 meteorological stations in arid and semi-arid region of Tibetan Plateau, and by using 5-day moving average method and ArcGIS-IDW module, this paper analyzed the spatiotemporal change characteristics and climatic trend rates of agricultural climate resources in the region in 1961-1980 (period I) and 1981-2007 (period II). In 1961-2007, the sunshine duration during the growth season of chimonophilous crops in the study region changed less, while that during the growth season of thermophilic crops increased but with little spatial change. Comparing with those in period I, the average value of accumulated temperature in period II showed an increasing trend, and the area with > or = 1500 degrees C x d during the growth season of thermophilic crops increased by 33.9%. The precipitation decreased gradually from southeast to northwest. During the growth season of chimonophilous crops, the precipitation in the southeast in the two periods reached 800 mm, but the climatic trend in other areas was positive or negative, and the change rate was small. The area with precipitation > or = 400 mm during the growth season of thermophilic crops in period II expanded by 40%, as compared in period I. The reference crop evapotranspiration (ET0) generally increased slightly, and shared the similar spatial distribution pattern with sunshine duration and accumulated temperature. During the growth season of thermophilic crops, the area with ET0 > or = 400 mm in period II expanded by 35.7%, compared with that in period I. In the study period, the heat and precipitation resources during crop growth seasons in Tibet Plateau increased in a certain degree, which was very beneficial to the agriculture-stock production. However, the increase of reference crop evapotranspitation indicated the increase of potential evaporation. Thereby, the researches about the possible effects of climate change on agriculture-stock production should be further strengthened.  相似文献   

15.
利用青藏高原腹地江河源头的曲麻莱县气象站1994~2004年观测的高寒嵩草草甸优势种高山嵩草的生育期、高度、产量等指标与同期气象资料,通过定量分析研究较长时段的物候及生物量变化特征,以揭示其对气候变化的响应.结果表明:(1)高山嵩草返青期和开花期的变化总体均呈"W"形,在区域气候变暖背景下,植物物候表现为返青期提前,开花期和枯黄期推迟,整个生长季延长.(2)高山嵩草的生物量变化在10年间呈明显的波动趋势,各月最高生物量均出现在1999年,最低生物量出现在1994年.(3)高山嵩草物候期与生长季各月气温呈显著的正相关关系(P<0.001),与月降水量呈弱正相关关系(P>0.05);月均气温成为本区草本植物发芽生长的先决条件,且6~8月气温与植物萌动的相关性最大.(4)生长季6~8月高山嵩草生物量鲜重和干重均与月均气温呈显著正相关,鲜重仅与月降水量呈显著正相关关系,在青藏高原的高寒区,温度比降水对植物产量的影响更大.  相似文献   

16.
野生动物的自然行为受当地家畜影响。作为与家畜共享一个栖息地、并具有挖掘行为的兔形目高原鼠兔,其行为也受当地高原家畜影响。本文采用了Poisson回归分析方法,确定牦牛、不同土地利用对高原鼠兔行为频次的影响。结果显示觅食、移动频次是高原鼠兔的主要行为频次。在冬季牦牛觅食地高原鼠兔觅食行为频次高于警戒行为频次。相反,在夏季,无论是在牦牛觅食地还是在其夜宿地,高原鼠兔警戒行为的频次高于觅食行为频次。高原鼠兔行为也受不同土地利用、植被覆盖度以及季节因素的影响。植被覆盖度与觅食频次成反比,植被覆盖度高的生境高原鼠兔觅食较少,相反,植被覆盖度较低生境觅食行为频繁。另外当前牧民的定居化趋势造成局域放牧过度,加速了土地荒漠化。因此本文也认为,季节性传统游牧模式对于草地可持续发展具有重要意义。  相似文献   

17.
The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect of the plateau and its implications. This paper firstly collects climate data (2001–2007) from 109 observation stations and MODIS-based estimated monthly mean temperature data in the plateau and the neighboring Sichuan Basin, and conducts correlation and simple linear regression to reveal the altitudinal pattern of temperature. Then, according to the linear relationships of temperature and altitude for each month, it compares air temperature differences on the same elevation between the main plateau and surrounding mountains and the Sichuan Basin so as to quantify the heating effect and discuss its implication on timberline of the plateau. The results show that: 1) the heating effect of the plateau is significant. The temperature of the main plateau area was higher than that of free air on the same elevation above the neighboring areas; on the elevation of 4500 m (the main plateau), temperature is 1–6°C higher in the main Plateau than over the Sichuan Basin for different months and 5.9–10.7°C higher than in the Qilian Mountains in the northeastern corner of the plateau. 2) Even at altitudes of 5000–6000 m in the main Plateau, there are 4 months with a mean temperature above 0°C. The mean temperature of the warmest month (July) can reach 10°C at about 4600–4700 m. This may help explain why the highest timberline in the northern hemisphere is on the southeastern Tibetan Plateau.  相似文献   

18.
青藏高原草地植被覆盖变化及其与气候因子的关系   总被引:74,自引:0,他引:74       下载免费PDF全文
为揭示气候变化对青藏高原草地生态系统的影响及其生态适应机制,利用1982~1999年间的NOAA/AVHRR NDVI数据和对应的气候资料,研究了近20年来青藏高原草地植被覆盖变化及其与气候因子的关系。结果表明,18年来研究区生长季NDVI显著增加(p=0.015),其增加率和增加量分别为0.41% a-1和0.001 0 a-1。生长季提前和生长季生长加速是青藏高原草地植被生长季NDVI增加的主要原因。春季为NDVI增加率和增加量最大的季节,其增加率和增加量分别为0.92% a-1和0.001 4 a-1;夏季NDVI的增加对生长季NDVI增加的贡献相对较小,其增加率和增加量分别为0.37% a-1和0.001 0 a-1。3种草地(高寒草甸、高寒草原、温性草原)春季NDVI均显著增加(p<0.01;p=0.001; p=0.002); 高寒草甸夏季NDVI显著增加(p=0.027),而高寒草原和温性草原夏季NDVI呈增加趋势,但都不显著(p=0.106; p=0.087);3种草地秋季NDVI则没有明显的变化趋势(p=0.585; p=0.461; p=0.143)。3种草地春季NDVI的增加是由春季温度上升所致。高寒草地(高寒草甸和高寒草原)夏季NDVI的增加是夏季温度和春季降水共同作用的结果。温性草原夏季NDVI变化与气候因子并没有表现出显著的相关关系。高寒草地植被生长对气候变化的响应存在滞后效应。  相似文献   

19.
为了解雅鲁藏布江流域内植被变化对气候变化响应的时空差异性,引入重心模型,分析和探讨了2002-2014年雅鲁藏布江流域植被的变化特点与气候因子的相关性。结果表明,植被的NDVI(归一化植被指数,Normalized difference vegetation index)重心与降水重心年际迁移方向具有正相关性。雅鲁藏布江流域的月植被NDVI受前0-1月降水影响最大,而不同季节植被的NDVI对降水影响表现出一定的滞后性,其中春季和冬季的植被NDVI均与前一季的降水呈现正相关性。该流域中乔木、灌木对降水反应的滞后性比草本植物要大;生长季的温度变化与植被的生长具有相关性。植被NDVI与月均温的正相关性达到最大的时间段差异较大。因此,植被NDVI和气候因子间的时空异质性研究对于雅鲁藏布江流域的生态环境保护具有重要意义。  相似文献   

20.
川西北高原是典型的生态气候敏感区,其植被状况与气候变化密切相关。本研究基于2001—2020年MODIS-NDVI数据集和气象数据,采用最大值合成、地理探测器模型、线性趋势分析、相关分析等方法,研究川西北高原生长季归一化植被指数(NDVI)的变化趋势及其对气候因子的响应机制。结果表明: 研究期间,川西北高原植被覆盖度整体状况良好,86.8%的区域植被稳定,12.6%的区域NDVI呈弱持续性上升趋势,0.6%的区域NDVI呈下降趋势,全区生态环境呈稳中向好的发展趋势。研究区植被覆盖度空间差异大,总体呈由西南向东北上升的趋势,并有显著的立体变化。海拔1350 m以下,NDVI随海拔升高而上升;海拔1350~3650 m,NDVI无显著变化;海拔3650~5900 m,NDVI随海拔升高而下降,在4750~5900 m快速下降;海拔5900 m以上,几乎无植被。川西北高原的NDVI受多种自然因子交互作用影响,热量因子(月最高气温极大值、月最低气温极小值、植物生长期、年均温、生长期均温)是主导气候因子,除月最高气温极大值外,其余温度因子对NDVI均以正贡献为主。NDVI对气温指数的响应高于降水指数。在气候变暖背景下,极端气温暖指数对川西北高原植被生长尤其是高海拔地区植被生长及改善以促进作用为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号