首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wild populations of the world’s most common dabbling duck, the mallard (Anas platyrhynchos), run the risk of genetic introgression by farmed conspecifics released for hunting purposes. We tested whether bill morphology of free-living birds has changed since large-scale releases of farmed mallards started. Three groups of mallards from Sweden, Norway and Finland were compared: historical wild (before large-scale releases started), present-day wild, and present-day farmed. Higher density of bill lamellae was observed in historical wild mallards (only males). Farmed mallards had wider bills than present-day and historical wild ones. Present-day wild and farmed mallards also had higher and shorter bills than historical wild mallards. Present-day mallards thus tend to have more “goose-like” bills (wider, higher, and shorter) than their ancestors. Our study suggests that surviving released mallards affect morphological traits in wild population by introgression. We discuss how such anthropogenic impact may lead to a maladapted and genetically compromised wild mallard population. Our study system has bearing on other taxa where large-scale releases of conspecifics with ‘alien genes’ may cause a cryptic invasive process that nevertheless has fitness consequences for individual birds.  相似文献   

2.
The possibility to obtain diploid hybrids by pollination of allotetraploid wild potato species Solanum acaule and S. stoloniferum plants with fertile pollen of S. tuberosum dihaploids was demonstrated for the first time. Dihaploid hybrids have arisen with comparatively high frequency (from 12.5 to 33.3%). They were characterized by high regularity of meiosis and high fertility. They easily crossed with S. tuberosum dihaploids, forming viable progeny. This seems prospective for effective introgression of valuable genetic gene pool of wild allotetraploid potato species in breeding material of S. tuberosum on the diploid level.  相似文献   

3.
Prunus yedoensis Matsumura is one of the popular ornamental flowering cherry trees native to northeastern Asia, and its wild populations have only been found on Jeju Island, Korea. Previous studies suggested that wild P. yedoensis (P. yedoensis var. nudiflora) is a hybrid species; however, there is no solid evidence on its exact parental origin and genomic organization. In this study, we developed a total of 38 nuclear gene-based DNA markers that can be universally amplifiable in the Prunus species using 586 Prunus Conserved Orthologous Gene Set (Prunus COS). Using the Prunus COS markers, we investigated the genetic structure of wild P. yedoensis populations and evaluated the putative parental species of wild P. yedoensis. Population structure and phylogenetic analysis of 73 wild P. yedoensis accessions and 54 accessions of other Prunus species revealed that the wild P. yedoensis on Jeju Island is a natural homoploid hybrid. Sequence-level comparison of Prunus COS markers between species suggested that wild P. yedoensis might originate from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura. Moreover, approximately 81% of the wild P. yedoensis accessions examined were likely F1 hybrids, whereas the remaining 19% were backcross hybrids resulting from additional asymmetric introgression of parental genotypes. These findings suggest that complex hybridization of the Prunus species on Jeju Island can produce a range of variable hybrid offspring. Overall, this study makes a significant contribution to address issues of the origin, nomenclature, and genetic relationship of ornamental P. yedoensis.  相似文献   

4.

Background

The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization.

Results

Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions.

Conclusions

Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.
  相似文献   

5.

Key message

The nonhost resistance of wild lettuce to lettuce downy mildew seems explained by four components of a putative set of epistatic genes.

Abstract

The commonplace observation that plants are immune to most potential pathogens is known as nonhost resistance (NHR). The genetic basis of NHR is poorly understood. Inheritance studies of NHR require crosses of nonhost species with a host, but these crosses are usually unsuccessful. The plant-pathosystem of lettuce and downy mildew, Bremia lactucae, provides a rare opportunity to study the inheritance of NHR, because the nonhost wild lettuce species Lactuca saligna is sufficiently cross-compatible with the cultivated host Lactuca sativa. Our previous studies on NHR in one L. saligna accession led to the hypothesis that multi-locus epistatic interactions might explain NHR. Here, we studied NHR at the species level in nine accessions. Besides the commonly used approach of studying a target trait from a wild donor species in a cultivar genetic background, we also explored the opposite, complementary approach of cultivar introgression in a wild species background. This bidirectional approach encompassed (1) nonhost into host introgression: identification of L. saligna derived chromosome regions that were overrepresented in highly resistant BC1 plants (F1?×?L. sativa), (2) host into nonhost introgression: identification of L. sativa derived chromosome regions that were overrepresented in BC1 inbred lines (F1?×?L. saligna) with relatively high infection levels. We demonstrated that NHR is based on resistance factors from L. saligna and the genetic dose for NHR differs between accessions. NHR seemed explained by combinations of epistatic genes on three or four chromosome segments, of which one chromosome segment was validated by the host into nonhost approach.
  相似文献   

6.
Despite possessing related ancestral genomes, hexaploid wheat behaves as a diploid during meiosis. The wheat Ph1 locus promotes accurate synapsis and crossover of homologous chromosomes. Interspecific hybrids between wheat and wild relatives are exploited by breeders to introgress important traits from wild relatives into wheat, although in hybrids between hexaploid wheat and wild relatives, which possess only homoeologues, crossovers do not take place during meiosis at metaphase I. However, in hybrids between Ph1 deletion mutants and wild relatives, crossovers do take place. A single Ph1 deletion (ph1b) mutant has been exploited for the last 40 years for this activity. We show here that chemically induced mutant lines, selected for a mutation in TaZIP4-B2 within the Ph1 locus, exhibit high levels of homoeologous crossovers when crossed with wild relatives. Tazip4-B2 mutant lines may be more stable over multiple generations, as multivalents causing accumulation of chromosome translocations are less frequent. Exploitation of such Tazip4-B2 mutants, rather than mutants with whole Ph1 locus deletions, may therefore improve introgression of wild relative chromosome segments into wheat.  相似文献   

7.
The ranges of the great tit Parus major and the Japanese tit P. minor overlap in the middle Amur region, where hybridization of these two species occur. These species have contacted for nearly a century on the western slope of the Malyi Khingan Ridge (the central part of the sympatry zone), but the great tit has colonized territories to the east of the ridge only in the last two decades. The percentage of the P. minor’s allele of intron 2 of the mioglobin gene has significantly increased from 8.9% in the west to 27.8% in the east in phenotypically major’s populations. Thus, the percentage of foreign mtDNA in P. major populations did not change significantly from west (6.2%, n = 120) to east (3.2%, n = 61). Simultaneous use of two genetic markers (one nuclear and the other mitochondrial) supports our conclusion on strong introgression in the populations of both species, which nevertheless maintain their morphological specificity in the contact zone.  相似文献   

8.
Stenotopic specialization to a fragmented habitat promotes the evolution of genetic structure. It is not yet clear whether small-scale population structure generally translates into large-scale intraspecific divergence. In the present survey of mitochondrial genetic structure in the Lake Tanganyika endemic Altolamprologus (Teleostei, Cichlidae), a rock-dwelling cichlid genus comprising A. compressiceps and A. calvus, habitat-induced population fragmentation contrasts with weak phylogeographic structure and recent divergence among genetic clades. Low rates of dispersal, perhaps along gastropod shell beds that connect patches of rocky habitat, and periodic secondary contact during lake level fluctuations are apparently sufficient to maintain genetic connectivity within each of the two Altolamprologus species. The picture of genetic cohesion was interrupted by a single highly divergent haplotype clade in A. compressiceps restricted to the northern part of the lake. Comparisons between mitochondrial and nuclear phylogenetic reconstructions suggested that the divergent mitochondrial clade originated from ancient interspecific introgression. Finally, ‘isolation-with-migration’ models indicated that divergence between the two Altolamprologus species was recent (67–142 KYA) and proceeded with little if any gene flow. As in other rock-dwelling cichlids, recent population expansions were inferred in both Altolamprologus species, which may be connected with drastic lake level fluctuations.  相似文献   

9.
Genetic pollution through introgressive hybridization of local species by exotic relatives is a major, yet neglected aspect of biological invasions, particularly in amphibians where human introductions are frequent. In Western Switzerland, crested newts make an interesting case: the Italian species Triturus carnifex was introduced at least a century ago within the range of the native and threatened T. cristatus. To understand the genetic consequences of this introduction and inform wildlife management authorities, we conducted a genetic survey on the remaining northern crested newt populations known in the area, using newly-developed species-diagnostic nuclear (microsatellites) and mitochondrial (control region) DNA markers. We documented massive nuclear introgression by the T. carnifex genome, which has completely replaced T. cristatus in most populations, especially in the Geneva area where the introduction was originally reported. However, many of these individuals retained the ancestral T. cristatus mtDNA, which could be explained by asymmetric introgression between the two species, stemming from demographic and/or selective processes. Analyses of genetic diversity support multiple events of T. carnifex releases, most-likely of proximate North Italian origin. We pinpointed the last indigenous populations in the region and recommend to prioritize their protection. Our study demonstrates the invasive potential of introduced taxa through introgressive hybridization, alerts about the underestimated rate of illegal amphibian translocations, and emphasizes the need for genetic analyses to monitor such invasions.  相似文献   

10.
Invasive species are one of the greatest threats to biodiversity, due to competition, predation, pathogen spread, and hybridization. The latter may remain undetected and impair the survival of species, due to genetic admixture and hybrid swarming (i.e., interbreeding between hybrid individuals and backcrossing with parental species). The impact of invasive species remains poorly studied in the Neotropical ichthyofauna, particularly when considering the potential for hybridization between native and introduced species. Due to fisheries importance and its commercial value, species of the Prochilodus genus have been introduced to other catchments in Brazil. Here, we evaluate the introduction of non-native Prochilodus species and the potential effect of hybridization with the native migratory fish P. hartii. To evaluate possible introgression of Prochilodus spp. to P. hartii in the Jequitinhonha river basin (JRB), we employed a morphogenetic approach, analysing 219 specimens sampled from a broad extent of the river basin. Morphological analyses using meristic characters were incongruent with molecular identification by DNA barcoding (COI) in 22.83% of the analysed specimens. Haplotypes from three non-native species (P. argenteus, P. costatus, and P. lineatus) were recovered from specimens morphologically identified as P. hartii. Hybridization between P. hartii and introduced species was confirmed using co-dominant nuclear microsatellite markers. We observed a pronounced introgression pattern in this Neotropical basin, and paradoxically, despite being one of the most abundant migratory species native to the JRB, due to ongoing levels of introgression, P. hartii’s genetic integrity and conservation might be affected.  相似文献   

11.
Dicyphus hesperus Knight (Heteroptera: Miridae) can contribute to the suppression of populations of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and Bactericera cockerelli Sulcer (Hemiptera: Psyllidae) in tomato. Nevertheless, the remaining levels of these pests could still be too high for the crop to tolerate. We thus tested here whether the combination of D. hesperus with the specialist parasitoids Eretmocerus eremicus Rose & Zolnerowich (Hymenoptera: Aphelinidae) (whitefly) and Tamarixia triozae (psyllid) can result in better pest control compared with methods based exclusively on single-species releases in tomato. We conducted two simultaneous experiments in tomato (‘Whitefly’ and ‘Psyllid’ Experiment), where we compared the effectiveness against B. tabaci and B. cockerelli in cages receiving releases of the predator or the specialist parasitoid alone, or in combination. Although all natural enemies reduced pest levels when released separately, the combination of D. hesperus with E. eremicus and D. hesperus with T. triozae resulted in better whitefly and psyllid control, respectively, compared with the separate releases.  相似文献   

12.

Key message

The negative association between the I - 3 gene and increased sensitivity to bacterial spot is due to linkage drag (not pleiotropy) and may be remedied by reducing the introgression size.

Abstract

Fusarium wilt is one of the most serious diseases of tomato (Solanum lycopersicum L.) throughout the world. There are three races of the pathogen (races 1, 2 and 3), and the deployment of three single, dominant resistance genes corresponding to each of these has been the primary means of controlling the disease. The I-3 gene was introgressed from S. pennellii and confers resistance to race 3. Although I-3 provides effective control, it is negatively associated with several horticultural traits, including increased sensitivity to bacterial spot disease (Xanthomonas spp.). To test the hypothesis that this association is due to linkage with unfavorable alleles rather than to pleiotropy, we used a map-based approach to develop a collection of recombinant inbred lines varying for portions of I-3 introgression. Progeny of recombinants were evaluated for bacterial spot severity in the field for three seasons, and disease severities were compared between I-3 introgression haplotypes for each recombinant. Results indicated that increased sensitivity to bacterial spot is not associated with the I-3 gene, but rather with an upstream region of the introgression. A survey of public and private inbred lines and hybrids indicates that the majority of modern I-3 germplasm contains a similarly sized introgression for which the negative association with bacterial spot likely persists. In light of this, it is expected that the development and utilization of a reduced I-3 introgression will significantly improve breeding efforts for resistance to Fusarium wilt race 3.
  相似文献   

13.
Totally, 294 bank voles (Clethrionomys glareolus) and 18 red-backed voles (Cl. rutilus) from 62 sites of European Russia were studied. Incomplete sequences (967 bp) of the mitochondrial cytochrome b gene were determined for 93 Cl. glareolus individuals from 56 sites and 18 Cl. rutilus individuals from the same habitats. Analysis of the cytochrome b gene variation has demonstrated that practically the entire European part of Russia, Ural, and a considerable part of Western Europe are inhabited by bank voles of the same phylogroup, displaying an extremely low genetic differentiation. Our data suggest that Cl. glareolus very rapidly colonized over the presently occupied territory in the post-Pleistocene period from no more than two (central European and western European) refugia from ancestral populations with a small effective size. PCR typing of the mitochondrial cytochrome b gene allowed us to assess the scale of mtDNA introgression from a closely related species, Cl. rutilus, and to outline the geographical zone of this introgression. Comparison with the red-backed vole haplotypes in the habitats shared by both species favors the hypothesis of an ancient hybridization event (mid-Holocene) and a subsequent introgression. These results suggest that the hybridization took place in the southern and middle Pre-Ural region.  相似文献   

14.
Alien introgressions into crop plants rely on phenotypic evaluation. Employing molecular markers could greatly accelerate this and help discover new alleles/QTLs. We report here a new strategy to develop markers for tracking introgression using genome survey sequence. We demonstrate this using an advanced backcross population of Brassica juncea involving the wild species Diplotaxis erucoides. To develop D. erucoides-specific markers, 72 million single end reads were obtained using Ion-Torrent platform. Quality reads (67.6 million) were checked against Brassica database and the redundant reads were eliminated. De novo assembly of the remaining 14.6 million reads gave 3895 contigs (> 1 kb), which were used to design 101 donor-specific (DS) STS markers. Of these, 89 markers showed polymorphism between D. erucoides and B. juncea. Genotyping of 90 randomly picked plants with 31 donor-specific STS markers detected 22 plants containing 17 markers. Alien introgression was also detected in eight of the 22 lines displaying phenotypes deviating from B. juncea parent. The marker DSSTS 70 was found in six of the nine lines showing glossy leaf suggesting its association with the trait. This is the first study demonstrating the use of molecular markers for implementing reverse genetics approach for alien introgression into crop plants.  相似文献   

15.
The Agave angustifolia complex, distributed from Mexico to Costa Rica, comprises four species and five varieties, including three species used for mescal production. The complex is represented in the Mexican state of Oaxaca by two wild taxa, A. angustifolia var. angustifolia and A. angustifolia var. rubescens, the cultivated form A. angustifolia “Espadín” and the partially cultivated species A. rodacantha. The aims of this study were to investigate the morphological and genetic variation of the A. angustifolia complex in the state of Oaxaca and to identify traits useful for taxonomic delimitation. Four wild and three cultivated populations of A. angustifolia from Oaxaca, one population of A. tequilana from Guanajuato and one population of A. angustifolia from Sonora were sampled for morphological, genetic and cytometric analyses. We showed that cultivated populations of A. angustifolia “Espadin,” A. rhodacantha and A. tequilana could be clearly differentiated from wild populations. Furthermore, the domesticated populations of A. angustifolia, known locally as “Espadin,” had a higher ploidy level and lower genetic variation than their related wild populations. The population of A. angustifolia from Sonora could be recognized as a different entity. Populations of A. rhodacantha need to be studied throughout their entire distribution area to further evaluate their taxonomic delimitation.  相似文献   

16.
Identification and characterization of plant promoters from wild rice genotypes showing inducible expression under soil water stress (SWS) is desirable for transgene expression to generate stress tolerant rice cultivars. A comparative expression profiling of Wsi18, a group 3 LEA gene, revealed differential response under SWS conditions between modern cultivated rice (IR20) and its wild progenitor (Oryza nivara). Wsi18 promoter from O. nivara showed enhanced inducible expression of the reporter gusA gene, encoding β-glucuronidase, in transgenic rice plants in comparison to similar promoter from IR20. Deletion analysis unravelled the cis-acting regulatory elements minimally required for optimal expression of Wsi18 promoter from O. nivara under SWS condition. This is the first report of characterization of an inducible promoter from a wild rice genotype to drive the gene expression under water stress conditions. The Wsi18 promoter element from the wild rice genotype can be used in future genetic manipulation strategies for the generation of SWS tolerant rice cultivars with improved yield characteristics.  相似文献   

17.

Key message

Using a much higher number of SNP markers and larger sample sizes than all the previous studies, we characterized the genetic relationships among wild and cultivated plants of section Beta.

Abstract

We analyzed the genetic variation of Beta section Beta, which includes wild taxa (Beta macrocarpa, B. patula, B. vulgaris subsp. adanensis and B. vulgaris subsp. maritima) and cultivars (fodder beet, sugar beet, garden beet, leaf beet, and swiss chards), using 9724 single nucleotide polymorphism markers. The analyses conducted at the individual level without a priori groups confirmed the strong differentiation of B. macrocarpa and B. vulgaris subsp. adanensis from the other taxa. B. vulgaris subsp. maritima showed a complex genetic structure partly following a geographical pattern, which confounded the differences between this taxon and the cultivated varieties. Cultivated varieties were structured into three main groups: garden beets, fodder and sugar beets, and leaf beets and swiss chards. The genetic structure described here will be helpful to correctly estimate linkage disequilibrium and to test for statistical associations between genetic markers and environmental variables.
  相似文献   

18.
Coregonus peled (Gmelin) (Teleostei: Salmoniformes: Coregonidae), which is considered an important object of coldwater aquaculture, had been successfully introduced into an enclosed Western Mongolian lake Ulaagchny Khar in the early 1980s. At the same time larvae of two other Coregonus species—Baikal omul C. migratorius (Georgi) and least cisco C. sardinella Valenciennes—had also been released into the lake. Baikal omul was then reported as a naturalized species. This might have caused interspecific hybridization and gene introgression. Identification of coregonids by morphology can be problematic, so to determine which species was dominant in the lake (we presumed it was peled) and if its gene pool was affected by other introduced Coregonus species we sampled 40 individuals and analyzed them by sequencing a fragment of mtDNA cyt b and by allozyme electrophoresis. The analysis showed that all the fish belonged to C. peled with no evidence of admixture from other coregonid species. Taking into account mass release of both species in 1980s, it is evident that naturalization of peled in the lake was much more successful than that of Baikal omul.  相似文献   

19.
Loss of habitat and chemical use associated with agriculture can cause population declines of wild pollinators. Less is known about the evolutionary consequences of interactions between species used in commercial agriculture and wild pollinators. Given population declines of many wild bee species, it is crucial to understand if commercial queens become established in natural areas, if wild bees visit agricultural fields and have the potential to interact with commercial bees, and if gene flow occurs between commercial and wild bees. We drew on a long-term data set that documents commercial bumble bee (Bombus impatiens) use in New England, and we conducted genetic analyses of foraging B. impatiens from areas with varying intensities of commercial bee use. In agricultural areas with a history of commercial bee use we also sampled bees directly from commercial hives. We found significant genetic differences among foraging B. impatiens and B. impatiens sampled directly from hives (average pairwise F′ST = 0.14), but not among samples of foraging bees from natural areas (average F′ST among foraging bees?=?0.002). Furthermore, Bayesian analysis of population structure revealed that foraging bees caught in areas with a history of commercial bee use grouped with samples from natural areas. These results document an agricultural setting where there was no widespread introgression of alleles from commercial bumble bees to wild bumble bees, commercial bumble bees did not become established in natural areas, and wild bees were providing pollination services to crops.  相似文献   

20.
Hybridisation is an important evolutionary process. The investigation of hybridisation along elevational gradients, with their steep abiotic and biotic clines, provides insight into the adaptation and maintenance of species in adjacent habitats. The rare Senecio hercynicus and its spreading congener S. ovatus are vertically vicariant species that show hybridisation in their range overlaps. In the present study, we used AFLP fingerprinting of 689 individuals from 38 populations to analyse population structure and introgression patterns along four elevational transects (650–1350 m) in the Bavarian Forest National Park, Gemany. Subsequently, we searched for loci putatively under divergent selection that may maintain ‘pure’ species despite hybrid formation by identifying taxon-specific alleles. A maximum-likelihood based hybrid index shows that the overall genetic differentiation among all populations was very low with a vanishingly small number of pure parental individuals. Almost 75% of the investigated individuals were classified as backcrosses towards S. ovatus. The highest S. hercynicus ancestry was found in the uppermost populations of two transects. Further, we found seven taxon-specific alleles being under divergent selection that correlated with climatic variables and deviating from neutral introgression. According to our results, hybridisation of S. ovatus and S. hercynicus has reached an advanced state of genetic swamping and there seems to be no driving force that is strong enough to keep both species as different lineages. Rather, S. ovatus appears to benefit through putatively adaptive introgression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号