首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roads have many effects on the mammal populations of their surroundings. Prey species are thought to establish dense populations in road verges due to a predation release effect, which arise as a side-effect of roadside avoidance by predators and/or predator roadkill. A species that has been suggested to benefit from predation release and attain high densities near roads is the European rabbit, a keystone species in Mediterranean ecosystems. We monitored rabbit relative abundance at three distances from a motorway (50, 450 and 850 m) during a 6 month period, as well as hunting and predator pressures, in a suitable area for rabbits. The lowest rabbit abundance was found next to the motorway (6.76 ± 8.87 pellets/m2 per month) and the highest abundance at an intermediate distance (17.65 ± 23.11 pellets/m2 per month). Hunting and carnivore pressures were highest at the sampling transect located farthest from the infrastructure. Thus, variability in rabbit abundance did not match the predation release effect found close to the motorway, and some sort of road avoidance or other process must underlie the observed abundance pattern. We advocate for a formal measurement of prey populations response to roads prior to any generalization as, in the case of rabbit, the response to roads and the potential cascading effects on other species may depend on landscape characteristics.  相似文献   

2.
Human activity helps prey win the predator-prey space race   总被引:1,自引:0,他引:1  
Predator-prey interactions, including between large mammalian wildlife species, can be represented as a "space race", where prey try to minimize and predators maximize spatial overlap. Human activity can also influence the distribution of wildlife species. In particular, high-human disturbance can displace large carnivore predators, a trait-mediated direct effect. Predator displacement by humans could then indirectly benefit prey species by reducing predation risk, a trait-mediated indirect effect of humans that spatially decouples predators from prey. The purpose of this research was to test the hypothesis that high-human activity was displacing predators and thus indirectly creating spatial refuge for prey species, helping prey win the "space race". We measured the occurrence of eleven large mammal species (including humans and cattle) at 43 camera traps deployed on roads and trails in southwest Alberta, Canada. We tested species co-occurrence at camera sites using hierarchical cluster and nonmetric multidimensional scaling (NMS) analyses; and tested whether human activity, food and/or habitat influenced predator and prey species counts at camera sites using regression tree analysis. Cluster and NMS analysis indicated that at camera sites humans co-occurred with prey species more than predator species and predator species had relatively low co-occurrence with prey species. Regression tree analysis indicated that prey species were three times more abundant on roads and trails with >32 humans/day. However, predators were less abundant on roads and trails that exceeded 18 humans/day. Our results support the hypothesis that high-human activity displaced predators but not prey species, creating spatial refuge from predation. High-human activity on roads and trails (i.e., >18 humans/day) has the potential to interfere with predator-prey interactions via trait-mediated direct and indirect effects. We urge scientist and managers to carefully consider and quantify the trait-mediated indirect effects of humans, in addition to direct effects, when assessing human impacts on wildlife and ecosystems.  相似文献   

3.
4.
Roads with high traffic volumes are a source of animal mortality, can disrupt normal animal movements and dispersal, and may represent a potentially serious threat to wildlife population stability and viability. Retrofitting existing structures built for other purposes (e.g., drainage culverts or small below-grade access roads) to facilitate wildlife crossing by animals and to reduce mortality may be expensive if modifications to the existing structures themselves were involved. However, the environmental context surrounding these structures may influence the willingness of animals to cross, and management of some of these attributes may enhance the attractiveness of these structures. Culverts and underpasses are two common structures along roads in Portugal. We quantified the response of small and medium-sized carnivores to the presence of both types of existing passages by determining: (1) frequency of use; (2) whether use differed by type of passage, and if so; (3) by examining if associated environmental attributes might explain the differences observed. We surveyed 57 different passages along 252 km of highway with a total sampling effort of 2,330 passage trap-days. The mean passage rate for carnivores combined was 0.7 complete passages per crossing structure per day. Crossings by weasel, polecat, otter, and wildcat were infrequent or absent. Red fox, badger, genet and Egyptian mongoose used the crossing structures regularly and without obvious preference; stone marten preferred underpasses. Regression analyses showed the frequency of use by carnivores varied with structural, landscape, road-related features, and human disturbance with 17 of 26 (65%) attributes being significant. Larger passages with vegetation close to the passage entrances, favorable habitat in the surrounding area, and low disturbance by humans were important key features to regular use by the guild of species studied. Mitigation planning in areas with ecological significance for carnivores will be beneficial. Structural attributes and human disturbances are more difficult or expensive to change, even though related significantly to crossing use. Management of vegetation at passage entrances and restricting human use near passages in carnivore suitable areas may substantially improve crossing attractiveness for the guild of carnivore species.  相似文献   

5.
We investigated the seasonal spatial and temporal co-occurrence of three carnivore species in Liguria region (NW Italy)—the red fox (Vulpes vulpes), the European badger (Meles meles) and the wolf (Canis lupus)—using the information provided by camera-trapping monitoring. Data were collected from January 2013 to January 2015 by positioning camera traps in 200 sample stations. During 3479 trap days, we collected 1048 independent videos of target carnivore species, which revealed a general spatial coexistence among carnivores with some differences in seasonal occurrence of species. The red fox and the European badger showed temporal segregation, as their activity patterns suggested a differential use of night-time in all seasons. Activity patterns of the red fox and the wolf revealed moderate-high overlap and similar density distributions in all seasons except during winter. Coexistence between these species may be allowed by temporal segregation during winter and spatial segregation during spring. Finally, results regarding the European badger and the wolf suggest a moderate temporal segregation with a marked avoidance effect for the European badger induced by the presence of tracks left by wolves. Programmes aimed at carnivore conservation, and management should treat the entire guild, as it has been demonstrated that populations of different carnivores interact with each other in complex ways and that fine-scale mechanisms regulating carnivore assemblage influence different aspects of natural communities.  相似文献   

6.
7.
Coarse-scale patterns of distribution and abundance of species are the outcome of processes occurring at finer spatial scales, hence the conservation of species depends on understanding their fine-scale ecology. For Bornean carnivores, little is known about fine-scale predictors of species occurrence and it is assumed that the two main threats to wildlife on Borneo, habitat disturbance and hunting, also impact their occurrence. To increase our understanding of the Borneo carnivore community, we deployed 60 cameras in a logging concession in northern Sarawak, Malaysian Borneo, where different landscape covariates, both natural and anthropogenic, were present. We built single-species occupancy models to investigate fine-scale carnivore occupancy. Overall, forest disturbance had a negative effect on Hose’s civet (Diplogale hosei), banded civet (Hemigalus derbyanus) and yellow-throated marten (Martes flavigula). Further, banded civet had greater occupancy probabilities in more remote areas. Logging roads had the most diverse effect on carnivore occupancy, with Hose’s civet and masked palm civet (Paguma larvata) negatively affected by roads, whereas Malay civet (Viverra tangalunga), short-tailed mongoose (Herpestes brachyurus) and leopard cat (Prionailurus bengalensis) showed higher occupancy closer to roads. Canopy height, canopy closure, number of trees with holes (cavities) and distance to nearest village also affected occupancy, though the directions of these effects varied among species. Our results highlight the need to collect often overlooked habitat variables: moss cover and ‘kerangas’ (tropical heath forest) were the most important variables predicting occurrence of Hose’s civet. The preservation of such forest conditions may be crucial for the long-term conservation of this little-known species. Our results confirm that logged forests, when left to regenerate, can host diverse carnivore communities on Borneo, provided less disturbed habitat is available nearby, though human access needs to be controlled. We recommend easy-to-implement forest management strategies including maintaining forest next to logging roads; preserving fruiting trees and trees with cavities, both standing and fallen; and blocks of remote, less disturbed, mid- to high-elevation forest with understorey vegetation.  相似文献   

8.
Corridors are thought to reduce the negative biological effects of habitat loss and fragmentation by providing connectivity and suitable habitat for many species, including carnivores. Although corridor structure maintenance is considered to be an essential tool for carnivore conservation in a human-dominated landscape, surprisingly little is known about the effects of different factors at various spatial scales. The main aim of this study was to determine how local and landscape-scale habitat characteristics and prey availability influence the corridor use by carnivores in a Central European agricultural landscape. Moreover we investigated carnivore corridor occurrence in two contrasting landscapes that differ in level of habitat loss and fragmentation to evaluate relative effect of species-specific response to regional context. Results show that the availability of principal prey (small mammals) was the most crucial factor affecting carnivore corridor use. Other important factors influencing corridor use were corridor width (positive), proportion of shrubs (positive) and presence of local, low-traffic, roads (positive). Single species models revealed interspecific and area-specific differences in carnivore preference at both spatial scales. Our findings confirm the general importance of multi-level approach to evaluating species-specific habitat requirements as a crucial tool for determining suitable methods for carnivore efficient conservation in human-dominated agricultural landscape.  相似文献   

9.
Summary

Seasonality and community structure of Phanaeini (Coleoptera: Scarabaeidae) in French Guiana : study by mass sampling using large flight interception traps. Phanaeini is a neotropical tribe of scarabs mostly dung or carrion feeders, generally of large size. This paper analyses data collected with large window flight interception traps set on nine forest sites in French Guiana with a primary goal of biotic inventory. The study deals with three main questions: 1) What is the spatial structure of communities and are there some species indicators of secondary forests and others of pristine conditions? 2) What is the temporal structure of the community and is there a stable pattern of seasonality between years and sites? 3) Between close species, is there a temporal asynchrony? Our samples contain more than 9,700 identified specimens, nine complete year series on four sites including a four years continuous survey near Cayenne. We found a significantly lower diversity (Shannon and Simpson index) on the most fragmented and hunted sites. A more equitable repartition of species and a relative abundance of the larger species appear typical of undisturbed sites. Other observations reinforce the hypothesis that there is a fast and huge modification in Phanaeini community structure on the most accessible and disturbed sites. Seasonal pattern shows an abundance peak at the beginning of the rainy season (December or January), a medium abundance during the rainy season with sometimes secondary peaks and a low to very low activity during the dry season. The pattern is rather consistent between years but changes with sampling site. It is however different from the results of other studies using pitfall baited traps in Amazonian and Guyanese forests. These studies show much less clear temporal pattern or no seasonal change. There is no obvious pattern of niche sharing by phenological differences between species. The methodological differences of sampling between baited traps and window flight traps are eventually discussed. Due to its passive way of collecting, interception trap is considered as quite relevant for studying flight activity spatio-temporal patterns of Scarabaeinae. This aspect may explain some differences in seasonality patterns compared to other studies.  相似文献   

10.
Understanding the interactions between predators and prey is essential for predicting the effects of disturbances to ecosystems. Motorways produce changes in the surrounding biotic and abiotic environment and hence have multiple impacts on wildlife. Some species are known to change their activity patterns in the proximity of motorways but the implications for the structure of food webs are unknown. This study analyzes the activity patterns of both mammalian predators and their prey species near nine motorways in attempt to clarify how motorways affect the mammalian community. Habitat structural variables were also sampled to control the effects of microhabitat on relative prey abundance. Our results revealed different activity patterns of both predators and prey near motorways that are independent of structural differences in microhabitat. Both the red fox and small mammals were found to use the zone close to the motorways more frequently, whereas lagomorphs and mustelids were less active there. These differences suggest that motorways favor the population of the predator that is most tolerant of human activity, the red fox, whose activity could have both direct and indirect effects on that of other members of the predator and prey community. On the one hand, the red fox seems to act as “top predator” and mustelids to follow a “safety match” strategy avoiding the area close to the motorway where fox is more active. On the other hand, abundances of prey species are negatively associated with the activity of their most frequent predators. This study is the first to assess how the proximity to motorways affects the activity of mammals in two levels of the food web and opens the field for research to understand the processes driving the detected patterns. Moreover, such effects at the community scale should be taken into account when evaluating the impacts of motorways on the surrounding ecosystems.  相似文献   

11.
Agri-environment scheme (AES) approaches can be classified according to whether they prescribe management in non-productive areas, such as field boundaries and wildflower strips, or in productive areas, such as arable crops. Here we tested the ecological effectiveness of two popular AESs in Germany: wildflower strips next to winter wheat fields as off-field management and organic farming on winter wheat fields as on-field management. We selected ten landscapes along a field size gradient with three focal wheat fields, one conventional field with flower strip, one organic field and one conventional field without flower strip as a control. We sampled arthropods with pitfall traps at field edges and field interiors. We selected three ecological traits for spiders and carabids (body size, feeding trait, dispersal ability). We calculated community weighted mean values (CWM), and we used linear mixed effects models to test the effect of management type and transect position on CWM values. We found pronounced edge effects on most traits, and weaker effects of field size and AES in shaping functional traits. Smaller spiders, spiders with higher ballooning propensity and more web-builders were in the field interior than at the field edge, whereas carnivore carabids preferred field interiors. We also found a strong effect of landscape configuration, i.e. mean field size, as larger field size was positively related to more web-building spiders and more carnivore beetles. Flower strips enhanced populations of web-building spiders. Our results suggest that small-scale agriculture leading to high landscape-scale edge density has a major effect in shaping functional traits and potential ecosystems services in agricultural landscapes. Spider and carabid communities exhibit very different responses to edge vs. interior sites, and, based on the landscape-scale field size gradient emphasize the importance of landscape configuration in shaping the heterogeneity of the arthropods’ traits and presumably ecosystem services in agricultural landscapes.  相似文献   

12.
Innovative conservation tools are greatly needed to reduce livelihood losses and wildlife declines resulting from human–carnivore conflict. Spatial risk modeling is an emerging method for assessing the spatial patterns of predator–prey interactions, with applications for mitigating carnivore attacks on livestock. Large carnivores that ambush prey attack and kill over small areas, requiring models at fine spatial grains to predict livestock depredation hot spots. To detect the best resolution for predicting where carnivores access livestock, we examined the spatial attributes associated with livestock killed by tigers in Kanha Tiger Reserve, India, using risk models generated at 20, 100, and 200‐m spatial grains. We analyzed land‐use, human presence, and vegetation structure variables at 138 kill sites and 439 random sites to identify key landscape attributes where livestock were vulnerable to tigers. Land‐use and human presence variables contributed strongly to predation risk models, with most variables showing high relative importance (≥0.85) at all spatial grains. The risk of a tiger killing livestock increased near dense forests and near the boundary of the park core zone where human presence is restricted. Risk was nonlinearly related to human infrastructure and open vegetation, with the greatest risk occurring 1.2 km from roads, 1.1 km from villages, and 8.0 km from scrubland. Kill sites were characterized by denser, patchier, and more complex vegetation with lower visibility than random sites. Risk maps revealed high‐risk hot spots inside of the core zone boundary and in several patches in the human‐dominated buffer zone. Validation against known kills revealed predictive accuracy for only the 20 m model, the resolution best representing the kill stage of hunting for large carnivores that ambush prey, like the tiger. Results demonstrate that risk models developed at fine spatial grains can offer accurate guidance on landscape attributes livestock should avoid to minimize human–carnivore conflict.  相似文献   

13.
Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250m and 500 m radius buffers was stronger during the night for the Darwin''s fox and cougar. Road density at 250m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin''s fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants and the dispersion rates of dogs into these habitats.  相似文献   

14.
Anthropogenic disturbances can constrain the realized niche space of wildlife by inducing avoidance behaviors and altering community dynamics. Human activity might contribute to reduced partitioning of niche space by carnivores that consume similar resources, both by promoting tolerant species while also altering behavior of species (e.g. activity patterns). We investigated the influence of anthropogenic disturbance on habitat and dietary niche breadth and overlap among competing carnivores, and explored if altered resource partitioning could be explained by human‐induced activity shifts. To describe the diets of coyotes, bobcat, and gray foxes, we designed a citizen science program to collect carnivore scat samples in low‐ (‘wildland’) and high‐ (‘interface’) human‐use open space preserves, and obtained diet estimates using a DNA metabarcoding approach. Habitat use was determined at scat locations. We found that coyotes expanded habitat and dietary niche breadth in interface preserves, whereas bobcats and foxes narrowed both niche breadth measures. High human use was related to increased dietary niche overlap among all mesocarnivore pairs, increased coyote habitat overlap with bobcats and foxes, and a small reduction in habitat overlap between bobcats and foxes. The strongest increase in diet overlap was among coyotes and foxes, which was smaller in magnitude than their habitat overlap increase. Finally, coyote scats were more likely to contain nocturnal prey in interface preserves, whereas foxes appeared to reduce consumption of nocturnal prey. Our results suggest that dominant and generalist mesocarnivores may encroach on the niche space of subordinate mesocarnivores in areas with high human activity, and that patterns in resource use may be related to human‐induced activity shifts.  相似文献   

15.
JANI HEINO 《Freshwater Biology》2011,56(9):1703-1722
1. The aim of this paper is to review literature on species diversity patterns of freshwater organisms and underlying mechanisms at large spatial scales. 2. Some freshwater taxa (e.g. dragonflies, fish and frogs) follow the classical latitudinal decline in regional species richness (RSR), supporting the patterns found for major terrestrial and marine organism groups. However, the mechanisms causing this cline in most freshwater taxa are inadequately understood, although research on fish suggests that energy and history are major factors underlying the patterns in total species and endemic species richness. Recent research also suggests that not all freshwater taxa comply with the decline of species richness with latitude (e.g. stoneflies, caddisflies and salamanders), but many taxa show more complex geographical patterns in across‐regions analyses. These complexities are even more profound when studies of global, continental and regional extents are compared. For example, clear latitudinal gradients may be present in regional studies but absent in global studies (e.g. macrophytes). 3. Latitudinal gradients are often especially weak in the across‐ecosystems analyses, which may be attributed to local factors overriding the effects of large‐scale factors on local communities. Nevertheless, local species richness (LSR) is typically linearly related to RSR (suggesting regional effects on local diversity), although saturating relationships have also been found in some occasions (suggesting strong local effects on diversity). Nestedness has often been found to be significant in freshwater studies, yet this pattern is highly variable and generally weak, suggesting also a strong beta diversity component in freshwater systems. 4. Both geographical location and local environmental factors contribute to variation in alpha diversity, nestedness and beta diversity in the freshwater realm, although the relative importance of these two groups of explanatory variables may be contingent on the spatial extent of the study. The mechanisms associated with spatial and environmental control of community structure have also been inferred in a number of studies, and most support has been found for species sorting (possibly because many freshwater studies have species sorting as their starting point), although also dispersal limitation and mass effects may be contributing to the patterns found. 5. The lack of latitudinal gradients in some freshwater taxa begs for further explanations. Such explanations may not be gained for most freshwater taxa in the near future, however, because we lack species‐level information, floristic and faunistic knowledge, and standardised surveys along extensive latitudinal gradients. A challenge for macroecology is thus to use the best possible species‐level information on well‐understood groups (e.g. fish) or use surrogates for species‐level patterns (e.g. families) and then develop hypotheses for further testing in the freshwater realm. An additional research challenge concerns understanding patterns and mechanisms associated with the relationships between alpha, beta and gamma components of species diversity. 6. Understanding the mechanistic basis of species diversity patterns should preferably be based on a combination of large‐scale macroecological and landscape‐scale metacommunity research. Such a research approach will help in elucidating patterns of species diversity across regional and local scales in the freshwater realm.  相似文献   

16.
Recreation activities in developed landscapes may add additional stressors that affect wildlife spatial and temporal activity patterns. We assessed medium to large mammal species response to a tourist scenic route in an agro-ecological mosaic landscape of the Shikma region, Israel. We placed 60 camera traps in an agro-ecological matrix and recorded mammals during three seasons between 2015 and 2017. We used N-mixture models to estimate mammal activity in relation with proximity to the scenic route and additional anthropogenic related factors such as traffic volume and land use. Anthropogenic development and activities had negative effects on large, endangered species, and none or positive on smaller, commensal species. Our results suggest an expansion of human recreation activity may have adverse outcomes on apex predators, which can cause a chain reaction and lead to meso-predator release, ultimately affecting prey species. The results emphasize the need for land managers to be extra cautious when attempting to add additional stressors (i.e., recreation activity) to developed landscapes such as the study area. Such landscapes can function as healthy ecosystems and provide suitable habitats for wildlife given that land managers are aware and account for wildlife-limiting factors in future development plans.  相似文献   

17.
Disturbance frequently is implicated in the spread of invasive exotic plants. Disturbances may be broadly categorized as endogenous (e.g., digging by fossorial animals) or exogenous (e.g., construction and maintenance of roads and trails), just as weedy species may be native or exotic in origin. The objective of this study was to characterize and compare exotic and native weedy plant occurrence in and near three classes of disturbance – digging by prairie dogs (an endogenous disturbance to which native plants have had the opportunity to adapt), paved or gravel roads (an exogenous disturbance without natural precedent), and constructed trails (an exogenous disturbance with a natural precedent in trails created by movement of large mammals) – in three geographically separate national park units. I used plant survey data from the North and South Units of Theodore Roosevelt National Park and Wind Cave National Park in the northern mixed-grass prairie of western North and South Dakota, USA, to characterize the distribution of weedy native and exotic plants with respect to the three disturbance classes as well as areas adjacent to them. There were differences both in the susceptibility of the disturbance classes to invasion and in the distributions of native weeds and exotic species among the disturbance classes. Both exotic and native weedy species richness were greatest in prairie dog towns and community composition there differed most from undisturbed areas. Exotic species were more likely to thrive near roadways, where native weedy species were infrequently encountered. Exotic species were more likely to have spread beyond the disturbed areas into native prairie than were weedy native species. The response of individual exotic plant species to the three types of disturbance was less consistent than that of native weedy species across the three park units. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Europe is currently being re‐colonized by large carnivore species such as brown bear Ursus arctos, Eurasian lynx Lynx lynx and grey wolf Canis lupus. Approximately one‐third of Europe currently hosts at least one of these large carnivore species: they show permanent occurrence in some regions and sporadic occurrence without reproduction in others. We investigated potential future range expansions of these three large carnivores using three different analyses. First, we compared niche overlap between the historical, current permanent and current sporadic occurrences using n‐dimensional hypervolumes. Second, we identified the environmental variables that best explain differences between current sporadic and permanent occurrences through multi‐model inference. Third, we projected permanent occurrences into the future across a range of land‐use change scenarios. We also determined future refuges (i.e. sub‐optimal habitat in the environmental model, good habitat in the human disturbance model) and ecological traps (i.e. good habitat in the environmental model, sub‐optimal habitat in the human disturbance model). In the three large carnivore species, ecological niche overlap was higher between historical and current permanent occurrences than between historical and current sporadic occurrences, and we also found low ecological niche overlap between current permanent and sporadic occurrences. Between 20 and 24% (corresponding to 86 800 to 173 200 km2) of the current sporadic occurrences could result in permanent settlement of large carnivores in the year 2040, while 17–24% (corresponding to 122 200 to 104 100 km2) and 2.7–4.6% (corresponding to 11 800 to 28 400 km2) of the current sporadic occurrences are likely to become refuges and ecological traps, respectively. Factors affecting range expansion are human activities, which were negatively related to permanent occurrences of all three species. In light of our results, human‐dominated European landscapes provide ample space for the future recolonization of large carnivores.  相似文献   

19.
Mammalian carnivores play an important role in regulating food webs and ecosystems. While many carnivore populations are facing various threats such as habitat loss and fragmentation, poaching, and illegal trade, others have adapted to human-dominated landscapes. Information about Neotropical carnivore communities in particular is limited, especially in disturbed landscapes. We conducted a camera trap survey at 38 sites across the San Juan–La Selva Biological Corridor in Costa Rica to assess occupancy and detection probabilities of the carnivore community. We developed hypotheses within a likelihood-based framework in order to determine the landscape features and species traits (diet and size) that influenced their occupancy. We detected nine of the 13 native carnivores predicted to occur in the corridor. When modeled separately, each species responded to land cover changes differently, suggesting no strong community-wide predictors of occupancy. We then modeled three separate guilds within the carnivore community: omnivorous mesopredators, obligate carnivorous mesopredators, and apex predators. These community guild models revealed a negative relationship between omnivorous mesopredators and increasing forest and tree plantation cover, suggesting omnivores utilize forest fragments and edge habitats in agricultural landscapes. Obligate carnivorous mesopredator models did not reveal any strong habitat relationships, but landscape effects tended to contradict our a priori predictions. Apex predators were positively associated with increasing forest and tree plantation cover, protected areas, and increasing distances to villages. Alarmingly, apex predators and obligate carnivorous mesopredators were generally rare within the biological corridor. A lack of top-down control alone might result in heightened occupancy for all mesopredators, but because the community is dominated by omnivorous species, bottom-up release from human-induced land cover changes and resource provision may better explain their high occupancy.  相似文献   

20.
Roads and traffic may be contributing to global declines of insect populations. The ecological effects of roads often extend far into the surrounding habitat, over a distance known as the road‐effect zone. The quality of habitat in the road‐effect zone is generally degraded (e.g., due to edge effects, noise, light, and chemical pollution) and can be reflected in species presence, abundance, or demographic parameters. Road‐effect zones have been quantified for some vertebrate species but are yet to be quantified for insects. Investigating the road‐effect zone for insects will provide a better understanding of how roads impact ecosystems, which is particularly important given the role insects play as pollinators, predators, and prey for other species. We quantified the road‐effect zone for nocturnal flying insects along three major freeways in agricultural landscapes in southeast Australia. We collected insects using light traps at six points along 2‐km transects perpendicular to each highway (n = 17). We sorted the samples into order, and dried and weighed each order to obtain a measure of dry biomass. Using regression models within a Bayesian framework of inference, we estimated the change in biomass of each order with distance from the road, while accounting for environmental variables such as temperature, moon phase, and vegetation structure. The biomass of nine of the ten orders sampled did not change with distance from the freeway. Orthoptera (i.e., grasshoppers and crickets) was the only order whose biomass increased with distance from the freeway. From our findings, we suggest that the impacts of roads on insects are unlikely extending into the surrounding landscape over a distance of 2 km. Therefore, if there are impacts of roads on insects, these are more likely to be concentrated at the road itself, or on finer taxonomic scales such as family or genus level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号