首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient supply and the presence of grazers can control primary producers in aquatic ecosystems, but the relative importance of bottom-up and top-down effects remains inconclusive. We conducted a mesocosm experiment and a field study to investigate the independent and interactive effects of nutrient enrichment and grazing on primary producers in an eelgrass bed Zostera marina . Nutrient treatments consisted of ambient or enriched (2× and 4× ambient) concentrations of inorganic nitrogen and phosphate. Grazer treatments consisted of presence or absence of field densities of the common isopod Idotea baltica . We found strong and interacting effects of nutrients and grazing on epiphytes. Epiphyte biomass and productivity were enhanced by nutrient enrichment and decreased in the presence of grazers. The absolute amount of epiphyte biomass consumed by grazers increased under high nutrient supply, and thus, nutrient effects were stronger in the absence of grazing. The effects of grazers and fertilisation on epiphyte composition were antagonistic: chain-forming diatoms and filamentous algae profited from nutrient enrichment, but their proportions were reduced by grazing. Eelgrass growth was positively affected by grazing and by nutrient enrichment at moderate nutrient concentrations. High nutrient supply reduced eelgrass productivity compared to moderate nutrient conditions. The monthly measured field data showed a nitrogen limitation for epiphytes and eelgrass in summer, which may explain the positive effect of nutrient enrichment on both primary producers. Generally, the field data suggested the possibility of seasonally varying importance of bottom-up and top-down control on primary producers in this eelgrass system.  相似文献   

2.
Recent studies suggest that nutrient variation influences rocky intertidal community structure, however empirical evidence is rare. In the Gulf of Maine, tidepools that occur on seagull feeding roosts are potentially subjected to regular nutrient loading from seagull guano. The results of a survey conducted on Swan's Island, ME show that roost tidepools have very low macroinvertebrate and macroalgal diversity as well as very high phytoplankton biomass compared to non-roost tidepools. An experiment presented here tested basic food chain hypotheses in tidepool communities. These basic food chain models predict that in a tidepool with one trophic level (phytoplankton only), phytoplankton biomass will increase when nutrients are enriched. In contrast, these models predict that in two trophic level tidepools (phytoplankton and mussels) herbivory will prevent an increase in phytoplankton biomass when nutrients are enriched. A short term 2×2 factorially designed field experiment was used to test this basic conceptual model using herbivory by mussels and enrichment with nitrogen as the main effects. The results of this investigation are consistent with the predictions of basic food chain models, and indicate that over the short time interval of a few days, herbivory by mussels is sufficient to maintain low phytoplankton levels following enrichment with nitrogen. Experimental enrichment with phosphorus in this study had no effect on phytoplankton biomass. The results of this study suggest that periodic pulses of nitrogen into tidepools will have little effect on phytoplankton biomass when mussels are present and that longer-term chronic nitrogen influxes may be driving the patterns of community structure in tidepools occurring on roosts.  相似文献   

3.
1. Knowledge of the influence of predatory fish in detritus‐based stream food webs is poor. We tested whether larval abundance of the New Zealand leaf‐shredding caddisfly, Zelandopsyche ingens (family Oeconesidae), was affected by the presence of predatory brown trout, Salmo trutta and the abundance of their primary detrital resource (Nothofagus leaves). 2. The density of Z. ingens and the biomass of leaves were determined in seven fishless streams and four trout streams in the Cass region, central South Island, on four occasions spanning 5 years. 3. Physicochemical conditions were similar in trout and fishless streams, but ancova indicated that Z. ingens numbers were positively related to leaf biomass and that caddisfly numbers were significantly greater in fishless streams than trout streams for any given biomass of leaf. The cases of trout stream larvae were also heavier per unit length than those in fishless streams. 4. Our results provide evidence for both top‐down and bottom‐up influences on a detritus‐based stream food web. Although stream detritivores may benefit from a habitat that provides both food and a degree of protection from predators, top‐down effects of predators on detritivore population abundance were still important. Thus, detrital resource availability may determine maximum attainable population size, whereas predation is likely to reduce the population to a level below that.  相似文献   

4.
Responses of infaunal saltmarsh benthic invertebrates to whole-ecosystem fertilization and predator removal were quantified in Plum Island Estuary, Massachusetts, USA. Throughout a growing season, we enriched an experimental creek on each flooding tide to 70 μM NO3 and 4 μM PO4− 3 (a 10× increase in loading above background), and we reduced Fundulus heteroclitus density by 60% in a branch of the fertilized and a reference creek. Macroinfauna and meiofauna were sampled in creek (mudflat and creek wall), marsh edge (tall-form Spartina alterniflora) and marsh platform (Spartina patens and stunted S. alterniflora) habitats before and after treatments were begun; responses were tested with BACI-design statistics. Treatment effects were most common in the mid-range of the inundation gradient. Most fertilization effects were on creek wall where ostracod abundance increased, indices of copepod reproduction increased and copepod and annelid communities were altered. These taxa may use epiphytes (that respond rapidly to fertilization) of filamentous algae as a food source. Killifish reduction effects on meiobenthic copepod abundance were detected at the marsh edge and suggest predator limitation. Fish reduction effects on annelids did not suggest top-down regulation in any habitat; however, fish reduction may have stimulated an increased predation rate on annelids by grass shrimp. Interactions between fertilization and fish reduction occurred under S. patens canopy where indirect predator reduction effects on annelids were indicated. No effects were observed in mudflat or stunted S. alterniflora habitats. Although the responses of infauna to fertilization and predator removal were largely independent and of similar mild intensity, our data suggests that the effects of ecological stressors vary across the marsh landscape.  相似文献   

5.
Sexual maturation profoundly affects population dynamics, but the degrees to which genetic, top-down, and bottom-up controls affect age at maturity are unclear. Salmonid fishes have plastic age at maturity, and we consider genetic and environmental effects on this trait by developing fitness functions for coho salmon (Oncorhynchus kisutch). The functions are based on size-specific survival and reproductive success, where reproductive success is the product of fecundity and ability to defend nests (females) or the product of sperm volume and ability to mate (males). We model genetic and bottom-up controls (e.g., food availability) with an environmentally explicit growth function and top-down control (predation mortality) with survival functions that consider both size-dependent and size-independent mortality. For females, we predict that early maturation rarely maximizes fitness, but males can maximize fitness by maturing early if they grow well in freshwater. We predict that early maturation is most affected by the bottom-up effects of resource distribution at sea, followed by bottom-up and genotypic effects in freshwater. Top-down processes are predicted to have strong effects on the likelihood of delayed maturation.  相似文献   

6.
Braun  Lisa-Marie  Brucet  Sandra  Mehner  Thomas 《Aquatic Ecology》2021,55(2):527-543
Aquatic Ecology - Trophic interactions in the pelagic area of lakes and the opposing effects of fish feeding (top-down) and phytoplankton biomass (bottom-up) on zooplankton communities are central...  相似文献   

7.
The influence of predatory fish on the structure of stream food webs may be altered by the presence of forest canopy cover, and consequent differences in allochthonous inputs and primary production. Eight sites containing introduced brown trout (Salmo trutta) and eight sites that did not were sampled in the Cass region, South Island, New Zealand. For each predator category, half the sites were located in southern beech (Nothofagus) forest patches (range of canopy cover, 65–90%) and the other half were in tussock grassland. Food resources used by two dominant herbivores-detritivores were assessed using stable isotopes. 13C/12C ratios were obtained for coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), algal dominated biofilm from rocks, and larvae of Deleatidium (Ephemeroptera) and Olinga (Trichoptera). Total abundance and biomass of macroinvertebrates did not differ between streams with and without trout, but were significantly higher at grassland sites than forested sites. However, taxon richness and species composition differed substantially between trout and no-trout sites, irrespective of whether streams were located in forest or not. Trout streams typically contained more taxa, had low biomass of predatory invertebrates and large shredders, but a high proportion of consumers with cases or shells. The standing stock of CPOM was higher at forested sites, but there was less FPOM and more algae at sites with trout, regardless of the presence or absence of forest cover. The stable carbon isotope range for biofilm on rocks was broad and encompassed the narrow CPOM and FPOM ranges. At trout sites, carbon isotope ratios of Deleatidium, the most abundant invertebrate primary consumer, were closely related to biofilm values, but no relationship was found at no-trout sites where algal biomass was much lower. These results support a role for both bottom-up and top-down processes in controlling the structure of the stream communities studied, but indicate that predatory fish and forest cover had largely independent effects.  相似文献   

8.
1. Research has often focused on pelagic food chains and processes of lakes; less is known about the contribution of benthic energy flows to whole‐lake ecosystem energetics. This stems from the fact that the shoreline and littoral habitats, which provide a key linkage between sediment and water column, have only recently become a significant focus for study. 2. This study aimed to quantify the feeding and phosphorus allocation of a juvenile fish community in a littoral zone of a shallow lake in response to the biomass succession of the invertebrate prey community. Habitats comprising reed and adjacent open water were sampled over two consecutive years during day and night. 3. Although there were substantial year‐to‐year differences in the biomass of invertebrates, the fish community composition, diet consumption rates and phosphorus allocations were very similar in both study years. Biomasses and predation impacts by juvenile fish on prey groups were substantially higher within the reeds than in the adjacent open water habitat. This may be explained by the refuge‐seeking behaviour of the fish. 4. In general, invertebrates were negligibly influenced by fish feeding, with the exception for a strong top‐down control of large cladocerans. In response to the resulting low Daphnia biomass, fish were forced to switch to a higher degree of benthivory. Consequently, juvenile fish in littoral reed stands may shift benthic‐derived energy and phosphorus via the excretion of soluble reactive phosphorus into the open water.  相似文献   

9.
Degans  Hanne  De Meester  Luc 《Hydrobiologia》2002,479(1-3):39-49
Biomanipulation, through the reduction of fish abundance resulting in an increase of large filter feeders and a stronger top-down control on algae, is commonly used as a lake restoration tool in eutrophic lakes. However, cyanobacteria, often found in eutrophic ponds, can influence the grazing capacity of filter feeding zooplankton. We performed grazing experiments in hypertrophic Lake Blankaart during two consecutive summers (1998, with and 1999, without cyanobacteria) to elucidate the influence of cyanobacteria on the grazing pressure of zooplankton communities. We compared the grazing pressure of the natural macrozooplankton community (mainly small to medium-sized cladocerans and copepods) with that of large Daphnia magna on the natural bacterioplankton and phytoplankton prey communities. Our results showed that in the absence of cyanobacteria, Daphnia magna grazing pressure on bacteria was higher compared to the grazing pressure of the natural zooplankton community. However, Daphnia grazing rates on phytoplankton were not significantly different compared to the grazing rates of the natural zooplankton community. When cyanobacteria were abundant, grazing pressure of Daphnia magnaseemed to be inhibited, and the grazing pressure on bacteria and phytoplankton was similar to that of the natural macrozooplankton community. Our results suggest that biomanipulation may not always result in a more effective top-down control of the algal biomass.  相似文献   

10.
Strong top-down control by consumers has been demonstrated in rocky intertidal communities around the world. In contrast, the role of bottom-up effects (nutrients and productivity), known to have important influences in terrestrial and particularly freshwater ecosystems, is poorly known in marine hard-bottom communities. Recent studies in South Africa, New England, Oregon and New Zealand suggest that bottom-up processes can have important effects on rocky intertidal community structure. A significant aspect of all of these studies was the incorporation of processes varying on larger spatial scales than previously considered (10’s to 1000’s of km). In all four regions, variation in oceanographic factors (currents, upwelling, nutrients, rates of particle flux) was associated with different magnitudes of algal and/or phytoplankton abundance, availability of particulate food, and rates of recruitment. These processes led to differences in prey abundance and growth, secondary production, consumer growth, and consumer impact on prey resources. Oceanographic conditions therefore may vary on scales that generate ecologically significant variability in populations at the bottom of the food chain, and through upward-flowing food chain effects, lead to variation in top-down trophic effects. I conclude that top-down and bottom-up processes can be important joint determinants of community structure in rocky intertidal habitats, and predict that such effects will occur generally wherever oceanographic ‘discontinuities’ lie adjacent to rocky coastlines. I further argue that increased attention by researchers and of funding agencies to such benthic–pelagic coupling would dramatically enhance our understanding of the dynamics of marine ecosystems.  相似文献   

11.
Summary Measurements of carbon isotope ratios of central Mexican Crassulaceae collected over a broad habitat range show consistent patterns of CAM activity with no indications of substantial flexible photosynthetic pathways between C3 and CAM. The three genera studied — Echeveria, Pachyphytum, and Graptopetalum — are all closely related to Dudleya in which considerable flexible metabolic response has been demonstrated. Comparative measurements of carbon isotope ratios for field collected and greenhouse reared samples of the same taxa showed a uniform occurrence of slightly more negative 13C values, but no indication of substantial flexible metabolic response.  相似文献   

12.
We investigated the effects of predator diet breadth on the relative importance of bottom-up and top-down control of prey assemblages, using microbial food webs containing bacteria, bacterivorous protists and rotifers, and two different top predators. The experiment used a factorial design that independently manipulated productivity and the presence or absence of two top predators with different diet breadths. Predators included a "specialist" predatory ciliate Euplotes aediculatus, which was restricted to feeding on small prey, and a "generalist" predatory ciliate Stentor coeruleus, which could feed on the entire range of prey sizes. Both total prey biomass and prey diversity increased with productivity in the predator-free control and specialist predator treatments, a pattern consistent with bottom-up control, but both remained unchanged by productivity in the generalist predator treatment, a pattern consistent with top-down control. Linear food chain models adequately described responses in the generalist predator treatment, whereas food web models incorporating edible and inedible prey (which can coexist in the absence of predators) adequately described responses in the specialist predator treatment. These results suggest that predator diet breadth can play an important role in modulating the relative strength of bottom-up and top-down forces in ecological communities.  相似文献   

13.
Debate on the relative importance of competition for resources and trophic interactions in shaping the biological diversity of living communities remains unsettled after almost a century. Recently, dramatic increases in ungulate populations have provided a useful quasi-experiment on the effects of unrestrained ungulates on forest ecology. The islands of Haida Gwaii (Canada) offer a unique situation to investigate the potential of large herbivores to control temperate forest community structure and diversity. Black-tailed deer Odocoileus hemionus Merriam, native to adjacent mainland areas of British Columbia, were introduced in 1878 and spread to all but a few islands. Because deer were not native to the archipelago, islands that still lack deer provide a rare instance of temperate forest vegetation and fauna that developed in the absence of large herbivores. The colonisation of different islands at different times, and the absence of significant predation allow us to assess whether and how a large herbivore can exert “top-down” control on vegetation and its associated fauna. We studied plant communities in forest interior and shoreline, on seven small islands of varying browse history. Three islands were untouched by deer, deer had been resident for about 15 years on two, and on another two deer had been present for more than 50 years. Without deer, vegetation in the understorey and/or shrub layer was dense or very dense. Structure and composition varied markedly within and between shoreline and interior communities. Without deer, shoreline communities were dominated by species absent from islands with deer. Where deer had been present for less than 20 years most plant species characteristic of shorelines on islands without deer were already absent or scarce, but in the forest interior species richness was less affected and extensive shrub thickets remained. On islands where deer had been present for >50 years vegetation below the browse line was extremely simplified, converging in both forest interior and shoreline towards an open assemblage of a few deer-tolerant species, basically two coniferous trees. This top down effect on the plant community reflected up the food chain so that understorey invertebrate and shrub-dependent songbird communities became simplified. In contrast, species densities of litter arthropods (especially weevils and millipedes) were highest where deer were present for >50 years. Canopy birds were unaffected by deer presence. In the absence of predators, major climatic stress or other means to control the herbivore, deer browsing created greatly simplified plant and animal communities.  相似文献   

14.
The relationship between density and area depends on local growth rates and the area-dependence of migration rates. These rates vary among taxa due to dispersal behaviour, plot productivity and natural enemy impact. Previous studies in aphids suggest that aphid densities are highest in patches of intermediate sizes, and lower in small and large patches. The suggested mechanism causing these patterns is that the dispersal behaviour in aphids creates a mixture of area- and perimeter-dependent migration rates. In this paper, we used these predictions to examine the additional consequences of nutrient availability and natural enemies on the density-area relationship. The derived predictions were compared to data from a system with three aphid species, a set of aphid parasitoids and generalist natural enemies, and at two levels of plant nutrient availability. We find that predictions from the model based only on dispersal and local growth agree with the temporal dynamics of density-area relationships for aphids in high nutrient patches. In patches with low nutrients, high parasitism rates appeared to cause a negative density-area relationship for aphids, thereby deviating from predictions driven by the aphids' dispersal behavior. Hence, the dispersal model with scale-dependent migration rates can provide a useful tool for understanding insect distribution in patch size gradients, but the relative importance of top-down effects can completely change with plot productivity.  相似文献   

15.
Under the Ecosystem Exploitation Hypothesis ecosystem productivity predicts trophic complexity, but it is unclear if spatial and temporal drivers of productivity have similar impacts. Long-term studies are necessary to capture temporal impacts on trophic structure in variable ecosystems such as deserts. We sampled ants and measured plant resources in the Simpson Desert, central Australia over a 22-year period, during which rainfall varied 10-fold. We sampled dune swales (higher nutrient) and crests (lower nutrient) to account for spatial variation in productivity. We asked how temporal and spatial variation in productivity affects the abundance of ant trophic guilds. Precipitation increased vegetation cover, with the difference more pronounced on dune crests; seeding and flowering also increased with precipitation. Generalist activity increased over time, irrespective of productivity. Predators were more active in more productive (swale) habitat, i.e. spatial impacts of productivity were greatest at the highest trophic level. By contrast, herbivores (seed harvesters and sugar feeders) increased with long-term rainfall; seed harvesters also increased as seeding increased. Temporal impacts of productivity were therefore greatest for low trophic levels. Whether productivity variation leads to top-down or bottom-up structured ecosystems thus depends on the scale and dimension (spatial or temporal) of productivity.  相似文献   

16.
We examined in situ abundance and activities of the major bacterial groups in the two most distinct compartments of experimentally divided Lake Grosse Fuchskuhle (Germany). The selected south-west (SW) and north-east basin (NE) differ substantially in their major chemical and biological parameters that potentially influence the dynamics and composition of microbial communities. Water from the basins were incubated in dialysis bags, which allowed for a relatively free exchange of nutrients, limiting solutes and low molecular organic matter but fully prevented exchange of organisms. To investigate the effect of top-down and bottom-up manipulations three size fractions of water samples were produced: (i) unfiltered, (ii) pre-filtered through 5.0 microm pore size membranes to remove large particles, as well as grazers and (iii) pre-filtered through 0.8 microm filters to remove all potential bacterivores. One set of dialysis bags was either incubated in acidic SW (rich in humic matter) or in almost neutral NE basin whereas a second set was transferred from the SW to the NE basin and vice versa. Our study revealed pronounced differences in growth rates among the major bacterial groups in relation to the treatments. Members of the Betaproteobacteria, in particular of the subgroup targeted by the BETA2-870 probe, were highly abundant in both basins, and most of them belonged to the Polynucleobacter necessesarius subcluster PnecC. Their specific growth rates surprisingly increased in all treatments when being transplanted into the acidic SW basin, indicating that pH and humic substances greatly affected growth of this particular group in the lake. In contrast, members of the Sphingobacteria/Flavobacteria group of the Bacteroidetes (both basins) as well as Actinobacteria (SW basin) were less abundant, especially in the presence of flagellates (< 5.0 microm treatments). However, because of their extremely low initial numbers, grazing of heterotrophic nanoflagellates mostly controlled only a small part of the bacterial production (< or = 12%).  相似文献   

17.
The relative importance of top-down and bottom-up control in setting the equilibrium abundances within trophic levels is examined in a comparative study on the litter-based food chain of a temperate deciduous forest. During two consecutive years, we estimated the abundances of macroinvertebrate detritivores and their predators on a natural gradient of annual litterfall. Detritus-based food chains are thought to be classical examples of donor-controlled systems. Indeed, both trophic levels showed higher abundances on sites with higher annual litterfall. Therefore, they appear to be bottom-up controlled. Using the Errors-in-Variables regression technique, we quantitatively compared our data with the equilibrium predictions of a set of simple trophic chain models including bottom-up effects with different types of functional responses (Beddington-DeAngelis, Hassell-Varley, and ratio-dependent). The model with a Hassell-Varley type functional response yielded the best adjustment to the data, although with a very high value of the mutual interference parameter suggesting the existence of overcompensating density dependence. Several changes to the structure of this model were considered. Their adjustment to the data consistently yielded such high values of the interference parameter.  相似文献   

18.
Morphological convergence is expected when organisms which differ in phenotype experience similar functional demands, which lead to similar associations between resource utilization and performance. To consume prey with hard exoskeletons, snakes require either specialized head morphology, or to deal with them when they are vulnerable, for example, during molting. Such attributes may in turn reduce the efficiency with which they prey on soft‐bodied, slippery animals such as fish. Snakes which consume a range of prey may present intermediate morphology, such as that of Thamnophiine (Natricinae), which may be classified morphometrically across the soft–hard prey dietary boundary. In this study, we compared the dentition and head structure of populations of Thamnophis melanogaster that have entered the arthropod–crustacean (crayfish)‐eating niche and those that have not, and tested for convergence between the former and two distantly related crayfish specialists of the genus Regina (R. septemvittata and R. grahamii). As a control, we included the congener T. eques. Multivariate analysis of jaw length, head length, head width, and number of maxillary teeth yielded three significant canonical variables that together explained 98.8% of the variance in the size‐corrected morphological data. The first canonical variable significantly discriminated between the three species. The results show that head dimensions and number of teeth of the two Regina species are more similar to those of crayfish‐eating T. melanogaster than to non‐crayfish‐eating snakes or of T. eques. It is unclear how particular head proportions or teeth number facilitates capture of crayfish, but our results and the rarity of soft crayfish ingestion by T. melanogaster may reflect the novelty of this niche expansion, and are consistent with the hypothesis that some populations of T. melanogaster have converged in their head morphology with the two soft crayfish‐eating Regina species, although we cannot rule out the possibility of a morphological pre‐adaptation to ingest crayfish.  相似文献   

19.
Blumenshine  S.C.  Hambright  K.D. 《Hydrobiologia》2003,491(1-3):347-356
Limnologists have long recognized the importance of predation in freshwater communities. The majority of study of predator effects has involved vertebrate predators, with emphasis on planktivorous fish. Documented effects of planktivorous fish have been so dramatic that manipulations of their populations are seen by many as potential tools in lake management. However, the success of such manipulations is often less than desired due to the ubiquitous complexity of food webs and the pervasiveness of compensatory responses to food web manipulation. Recently, enormous effort has been applied to the Lake Kinneret pelagic food web in effort to reduced the abundance of the planktivorous Kinneret bleak Acanthobrama terraesanctae and thereby increase the biomass of herbivorous zooplankton in the hopes of increasing water clarity. We compared potential predation pressure on Lake Kinneret herbivorous zooplankton by bleak and the other major zooplankton predators in the lake, the cyclopoid copepods Mesocyclops ogunnus and Thermocyclops dybowskii. We found that, despite having much lower biomass, cyclopoid copepods accounted for a greater portion of the predation mortality on herbivorous zooplankton than bleak. Our results suggest that reductions in predation pressure by bleak will not yield subsequent increases in herbivorous zooplankton biomass. Rather, reductions in bleak predation pressure may allow for increases in cyclopoid copepod abundance and thereby a net increase in predation pressure on herbivorous zooplankton.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号