首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The activity of glucose-6-phosphate dehydrogenase (G6PD) in erythrocytes of the dogfish and 5 other fish species from the Black Sea as well as the activity of monoamine oxidase in the seabream serum are investigated. A short-term intensive swimming, which is a stress for fish, as it produces a 10-fold rise of the monoamine oxidase activity, was the cause of a fall of theG6PD activity level by 43–45 % (p < 0.05) in erythrocytes of the horse mackerel and seabream. The stay of the scorpionfish under hypoxic conditions (15% saturation), which also is a stress for the fish, also produced a decrease of the enzyme activity level in erythrocytes by 62 % (p < 0.001).  相似文献   

6.
7.
8.
Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step of the pentose phosphate pathway which generates NADPH for anabolic pathways and protection systems in liver. G6PD was purified from dog liver with a specific activity of 130 U x mg(-1) and a yield of 18%. PAGE showed two bands on protein staining; only the slower moving band had G6PD activity. The observation of one band on SDS/PAGE with M(r) of 52.5 kDa suggested the faster moving band on native protein staining was the monomeric form of the enzyme.Dog liver G6PD had a pH optimum of 7.8. The activation energy, activation enthalpy, and Q10, for the enzymatic reaction were calculated to be 8.96, 8.34 kcal x mol(-1), and 1.62, respectively.The enzyme obeyed "Rapid Equilibrium Random Bi Bi" kinetic model with Km values of 122 +/- 18 microM for glucose-6-phosphate (G6P) and 10 +/- 1 microM for NADP. G6P and 2-deoxyglucose-6-phosphate were used with catalytic efficiencies (kcat/Km) of 1.86 x 10(6) and 5.55 x 10(6) M(-1) x s(-1), respectively. The intrinsic Km value for 2-deoxyglucose-6-phosphate was 24 +/- 4mM. Deamino-NADP (d-NADP) could replace NADP as coenzyme. With G6P as cosubstrate, Km d-ANADP was 23 +/- 3mM; Km for G6P remained the same as with NADP as coenzyme (122 +/- 18 microM). The catalytic efficiencies of NADP and d-ANADP (G6P as substrate) were 2.28 x 10(7) and 6.76 x 10(6) M(-1) x s(-1), respectively. Dog liver G6PD was inhibited competitively by NADPH (K(i)=12.0 +/- 7.0 microM). Low K(i) indicates tight enzyme:NADPH binding and the importance of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

9.
Data in the literature based on the technique of graded osomotic hemolysis have been re-evaluated. Differences were previously found in the glucose-6-phosphate dehydrogenase/hemoglobin ratio and in the heat stability of the enzyme in hemolysates of 'old' and 'young' cells. These differences were believed to be due to the aging of the enzyme. As the erythrocyte membrane acts as a molecular sieve under hypotonic conditions [cf. Cseke, E., Váradi, A., Szabolcsi, G., and Biszku, E. (1978) FEBS Lett. 96, 15--18], the hemolysate obtained when a fraction is lysed does not properly represent the content of the lysed cells. As hemoglobin is lost from cells which are not yet lysed, the enzyme/hemoglobin ratio is underestimated in 'old' cells and overestimated in 'young' cells. It is further shown that the observed differences in the heat stability of glucose-6-phosphate dehydrogenase in the fractions obtained by graded hemolysis are due to the presence of different concentrations of endogeneous NADP. Therefore the published data obtained by graded osmotic hemolysis do not prove the assumption that the enzyme is aging during the lifetime of the erythrocyte.  相似文献   

10.
Glucose-6-phosphate dehydrogenase was purified from rabbit brain cortex using a single immunoaffinity chromatographic step and was contaminated only by a 50 kDa protein. The proteins, separated by SDS-PAGE, were sequenced: the glucose-6-phosphate dehydrogenase was blocked at the N-terminal, the co-eluted protein was similar to -tubulin. Our technique can be applied to purification and sequencing of the enzyme from brain areas or to measure its turnover rate in cultured cells.  相似文献   

11.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

12.
Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) was purified from rabbit erythrocytes. Initial velocity studies and product and dead-end inhibitor studies with this enzyme are consistent with a rapid equilibrium random mechanism with an enzyme-NADPH-glucose 6-phosphate dead-end complex.  相似文献   

13.
14.
Two anodic isoenzymes of glucose-6-phosphate dehydrogenase (G6PDH) were isolated from tobacco suspension culture WR-132, utilizing fractional ammonium sulfate precipitation and DEAE-cellulose chromatography. The pH optimum was 9.0 for isoenzyme G6PDH I and 8.0–8.3 for G6PDH IV. Isoenzyme G6PDH I exhibited Michaelis-Menten kinetics for both substrates, G6P and NADP+, with Km's of 0.22 mM and 0.06 mM, respectively. G6PDH IV exhibited Michaelis-Menten kinetics for G6P with a Km of 0.31 mM. The NADP+ double reciprocal plot showed an abrupt transition between two linear sections. This transition corresponds to an abrupt increase in the apparent Km and Vmax values with increasing NADP+, denoting negative cooperativity. The two Km's for high and low NADP+ concentrations were 0.06 mM and 0.015 mM, respectively. MWs of the isoenzymes as determined by SDS disc gel electrophoresis were 85 000–91 000 for G6PDH I and 54 000–59 000 for G6PDH IV. Gel filtration chromatography on Sephadex G-150 showed MW's of 91 000 for G6PDH I and 115 000 for G6PDH IV. A probable dimeric structure for IV is suggested, with two NADP+ binding sites.  相似文献   

15.
16.
17.
18.
This paper describes a simple and rapid method for the purification of glucose-6-phosphate dehydrogenase from bovine lens, together with analysis of the kinetic behaviour and some properties of the enzyme. The purification consisted of two steps, 2',5'-ADP-Sepharose 4B affinity chromatography and DEAE Sepharose Fast Flow ion exchange chromatography in procedure which took two working days. The enzyme was obtained with a yield of 13.7% and had a specific activity of 2.64 U/mg protein. The overall purification was about 19,700-fold. The molecular weight of the enzyme was found to be 62 +/- 3 kDa by Sephadex G-200 gel filtration chromatography. A protein band corresponding to a molecular weight of 69.2 +/- 3.2 kDa was obtained on SDS polyacrylamide slab gel electrophoresis. On chromatofocusing, lens glucose-6-phosphate dehydrogenase gave a single peak at pI 5.14. The activation energy of the reaction catalyzed by the enzyme was calculated from Arrhenius plot as Ea = 5.88 kcal/mol. The pH versus velocity curve had two peaks at pH 7.7 and 9.6. By the double-reciprocal plots and the product inhibition studies, it was shown that the enzyme follows 'Ordered Bi Bi' sequential kinetics. From the graphical and statistical analyses, KmNADP+, KmG-6-P, KiNADPH, Ki6-PGA were estimated to be 0.008 +/- 0.002, 0.035 +/- 0.013, 0.173 +/- 0.007 and 1.771 +/- 0.160 mM, respectively. The observed kinetic behaviour of glucose-6-phosphate dehydrogenase from bovine lens was in accordance with the enzyme from other sources.  相似文献   

19.
20.
Thessaly variant of glucose-6-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号