共查询到20条相似文献,搜索用时 9 毫秒
1.
The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3 d for hydrogen reactor and 12 d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15 d) under organic loading rate (OLR) 3 gVS/(L d). The two-stage process was still stable when the OLR was increased to 4.5 gVS/(L d), while the single-stage process failed. The study further revealed that by changing the HRThydrogen:HRTmethane ratio of the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridiumthermocellum-like species). The changes of substrates and HRT did not change the dominant species. The archaeal community structures in methane reactors were similar both in single- and two- stage reactors, with acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant species. 相似文献
2.
Production of biogas from solid organic wastes through anaerobic digestion: a review 总被引:2,自引:0,他引:2
Anaerobic digestion treatments have often been used for biological stabilization of solid wastes. These treatment processes generate biogas which can be used as a renewable energy sources. Recently, anaerobic digestion of solid wastes has attracted more interest because of current environmental problems, most especially those concerned with global warming. Thus, laboratory-scale research on this area has increased significantly. In this review paper, the summary of the most recent research activities covering production of biogas from solid wastes according to its origin via various anaerobic technologies was presented. 相似文献
3.
Production of hydrogen and methane from potatoes by two-phase anaerobic fermentation 总被引:2,自引:0,他引:2
A two-phase anaerobic process to produce hydrogen and methane from potatoes was investigated. In the first phase, hydrogen was produced using heat-shocked sludge. About 12h lag-phase vanished, hydrogen yield increased from 200.4 ml/g-TVS to 217.5 ml/g-TVS and the maximum specific hydrogen production rate also increased from 703.4 ml/g-VSS d to 800.5 ml/g-VSS d when improved substrate was used, in which Cl(-) was substituted for SO(4)(2-). Better performances of 271.2 ml-H(2)/g-TVS and 944.7 ml-H(2)/g-VSS d were achieved when potatoes were pretreated by alpha amylase and glucoamylase. In the second phase, methane was produced from the residual of the first phase using methanogens. The maximum additional methane yield was 157.9 ml/g-TVS and the maximum specific methane production rate was 102.7 ml/g-VSS d. The results showed that the energy efficiency increased from about 20% (hydrogen production process) to about 60%, which indicated the energy efficiency can be improved by combined hydrogen and methane production process. 相似文献
4.
Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens 总被引:4,自引:0,他引:4
Rates of methane production by three anaerobic ciliates containing symbiotic methanogens (the marine Metopus contortus and Plagiopyla frontata, and the limnic Metopus palaeformis) were quantified. Hydrogen production by normal (containing active symbionts), aposymbiotic and BES-treated cells was also measured in the case of the marine species. Methanogenesis was closely coupled to host metabolism and growth; at maximum ciliate growth rates (20°C) each methanogen produced about 1 fmol CH4 per hour corresponding to about 7, 4 and 0.35 pmol per ciliate per hour for M. contortus, P. frontata and M. palaeformis, respectively. Normal cells produced traces of H2. Hydrogen production by BES-treated or aposymbiotic cells accounted for 75 and 45% of the methane production of normal M. contortus and P. frontata cells, respectively. However, it is possible that hydrogen production was partly inhibited in the absence of methanogens. Theoretical considerations suggest that hydrogen transfer is significant to the metabolism of larger anaerobic ciliates. Ciliates with methanogens produced CH4 under microaerobic conditions due to their ability to maintain an anoxic intracellular environment at low external oxygen tensions. Methanogenesis was still detectable at a pO2 of 0.63 kPa (3 %atm sat). 相似文献
5.
Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process 总被引:5,自引:0,他引:5
Hydrogen and methane co-production from potato waste was examined using a two-stage process of anaerobic digestion. The hydrogen stage was operated in continuous flow under a pH of 5.5 and a HRT of 6h. The methane stage was operated in both continuous and semi-continuous flows under HRTs of 30 h and 90 h, respectively, with pH controlled at 7. A maximum gas production rate of 270 ml/h and an average of 119 ml/h were obtained from the hydrogen stage during the operation over 110 days. The hydrogen concentration contained in the gas was 45% (v/v), on average. The maximum and average gas production rates observed from methane reactor during the 74 days of semi-continuous flow operation were 187 and 141 ml/h, respectively, with an average methane concentration of 76%. Overall, 70% of VS, 64% of total COD in the feedstock were removed. The hydrogen and methane yields from the potato waste were 30 l/kg TS (with a maximum of 68 l/kg) and 183 l/kg TS (with a maximum of 225 l/kg), respectively. The total energy yield obtained was 2.14 kW h/kg TS, with a maximum of 2.74 kW h/kg TS. 相似文献
6.
Yuan Lu Qiheng Lai Chong Zhang Hongxin Zhao Kun Ma Xuebing Zhao Hongzhang Chen Dehua Liu Xin-Hui Xing 《Bioresource technology》2009,100(12):2889-2895
This paper presents the co-production of hydrogen and methane from cornstalks by a two- or three-stage anaerobic fermentation process augmented with effective artificial microbial community. Two-stage fermentation by using the anaerobic sludge and DGGE analysis showed that effective and stable strains should be introduced into the system. We introduced Enterobacter aerogens or Clostridium paraputrificum into the hydrogen stage, and C. paraputrificum was proven to be more effective. In the three-stage process consisting of the improved hydrolysis, hydrogen and methane production stages, the highest soluble sugars (0.482 kg/kg cornstalks) were obtained after the introduction of Clostridium thermocellum in the hydrolysis stage, under the thermophilic (55 °C) and acidic (pH 5.0) conditions. Hydrolysates from 1 kg of cornstalks could produce 2.61 mol (63.7 l) hydrogen by augmentation with C. paraputrificum and 4.69 mol (114.6 l) methane by anaerobic granular sludge, corresponding to 54.1% energy recovery. 相似文献
7.
8.
经过人工富集和驯化的兼性和严格厌氧微生物是厌氧消化工艺的核心。不同厌氧消化体系中存在的问题大多可以通过改变微生物群落的代谢活性来得到有效改善。得益于微生物组学检测技术的快速发展,对厌氧消化系统中微生物多样性的认识获得了极大的拓展,同时在微生物类群间、微生物与环境的互作关系研究方面也取得了一系列新的进展。然而,有机固废厌氧消化系统中,各种微生物以及微生物和物质的相互作用构成了更为复杂的代谢网络,所以目前对这些互作关系的解析尚不完善。本文重点关注了厌氧消化过程中的典型菌群互作关系,阐述了典型有机固废厌氧消化系统中存在的问题及微生物在其中发挥的作用,最后,立足于现有组学技术推动的微生物组研究进展,对未来有机固废厌氧消化系统微生物组的研究提出展望。 相似文献
9.
Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production 总被引:5,自引:0,他引:5
The wet organic fraction of household wastes was digested anaerobically at 37 °C and 55 °C. At both temperatures the volatile
solids loading was increased from 1 g l−1 day−1 to 9.65 g l−1 day−1, by reducing the nominal hydraulic retention time from 93 days to 19 days. The volatile solids removal in the reactors at
both temperatures for the same loading rates was in a similar range and was still 65% at 19 days hydraulic retention time.
Although more biogas was produced in the thermophilic reactor, the energy conservation in methane was slightly lower, because
of a lower methane content, compared to the biogas of the mesophilic reactor. The slightly lower amount of energy conserved
in the methane of the thermophilic digester was presumably balanced by the hydrogen that escaped into the gas phase and thus
was no longer available for methanogenesis. In the thermophilic process, 1.4 g/l ammonia was released, whereas in the mesophilic
process only 1 g/l ammonia was generated, presumably from protein degradation. Inhibition studies of methane production and
glucose fermentation revealed a K
i (50%) of 3 g/l and 3.7 g/l ammonia (equivalent to 0.22 g/l and 0.28 g/l free NH3) at 37 °C and a K
i (50%) of 3.5 g/l and 3.4 g/l ammonia (equivalent to 0.69 g/l and 0.68 g/l free NH3) at 55 °C. This indicated that the thermophilic flora tolerated at least twice as much of free NH3 than the mesophilic flora and, furthermore, that the thermophilic flora was able to degrade more protein. The apparent ammonia
concentrations in the mesophilic and in the thermophilic biowaste reactor were low enough not to inhibit glucose fermentation
and methane production of either process significantly, but may have been high enough to inhibit protein degradation. The
data indicated either that the mesophilic and thermophilic protein degraders revealed a different sensitivity towards free
ammonia or that the mesophilic population contained less versatile protein degraders, leaving more protein undegraded.
Received: 26 March 1997 / Received revision: 13 May 1997 / Accepted: 19 May 1997 相似文献
10.
Salomoni C Caputo A Bonoli M Francioso O Rodriguez-Estrada MT Palenzona D 《Bioresource technology》2011,102(11):6443-6448
Cost-effective technologies are needed to reach the international greenhouse gas (GHG) reduction targets in many fields, including waste and biomass treatment. This work reports the effects of CO2 capture from a combustion flue gas and its use in a newly-patented, two-phase anaerobic digestion (TPAD) process, to improve energy recovery and to reduce CO2 emissions. A TPAD process, fed with urban wastewater sludge, was successfully established and maintained for several months at pilot scale. The TPAD process with injection of CO2 exhibits efficient biomass degradation (58% VSS reduction), increased VFA production during the acidogenic phase (leading to VFA concentration of 8.4 g/L) and high biomethane production (0.350 Sm3/kgSSV; 0.363 Sm3/m3react·d). Moreover, CO2 intake in the acid phase has a positive impact on the overall GHG balance associated to biomethane production, and suggests an improved solution for both emission reduction and biomass conversion into biomethane. 相似文献
11.
Debra R. Reinhart Frederick G. Pohland 《Journal of industrial microbiology & biotechnology》1991,8(3):193-199
Summary Co-disposal of 12 compounds representing major organic classes (aromatic hydrocarbons, halogenated hydrocarbons, pesticides, phenols, and phthalate esters) with shredded municipal solid waste was tested using a laboratory-scale column and pilot-scale lysimeter to characterize transport and transformation phenomena including sorption, volatilization and bioassimilation. Leachate and gases emitted from the lysimeters were examined for identifiable products of biotransformation. The results of this investigation provided a mechanistic evaluation of the attenuating and assimilative capacity of municipal solid waste landfills for specific organic compounds. Physical/chemical organic compound characteristics were related to refuse characteristics and composition to predict compound fate. Such knowledge is useful in developíng landfill management and operational strategies consistent with the need for control of pollutant releases. 相似文献
12.
Two 5 L anaerobic reactors were used to monitor the mesophilic anaerobic digestion of source sorted organic fraction of municipal solid wastes (SS-OFMSW) focusing the attention on the response of alkalinity ratios. Intermediate/partial alkalinity (IA/PA) ratio can be used as a simple and cheaper alternative to VFAs analysis when digester's stability needs to be assessed in full-scale plants treating these organic wastes. However, lab-scale studies in order to establish a specific limit value of IA/PA referred to SS-OFMSW had not been conducted. In this study, a reference reactor (R1) was operated at low organic loading rates (OLR) and high hydraulic retention times (HRT) during 165 days. Besides, severe disturbances were applied to a second reactor (R2) during 281 days by means of increasing both HRT and OLR in order to assess the digester response under continuous overload conditions. The obtained results show that an IA/PA ratio of below 0.3 is recommended to maintain total VFAs between 2.5 and 3.5 kg m−3 and achieve a stable reactor performance treating SS-OFMSW in a range of total alkalinity (TA) between 13 and 15 kg CaCO3 m−3. These results provide a starting point to develop further works in full-scale digesters, in order to improve the monitoring and process control of full-scale anaerobic reactors treating SS-OFMSW. 相似文献
13.
Suraju A. Lateef Nilmini Beneragama Takaki Yamashiro Masahiro Iwasaki Kazutaka Umetsu 《Bioprocess and biosystems engineering》2014,37(3):355-363
Anaerobic co-digestion of cow manure (CM) and waste milk (WM), produced by sick cows during treatment with antibiotics, was evaluated in two-stage process under thermophilic condition (55 °C) to determine the effect of WM addition on hydrogen (H2) and methane (CH4) production potentials, volatile solids (VS) removal, and energy recovery. Six CM to WM VS ratios of 100:0, 90:10, 70:30, 50:50, 30:70, and 10:90 were examined using 1-L batch digesters. The WM VS ratio of 30 % was found to be the minimum limit for significant increases in specific H2 and CH4 yields, and VS removal as compared to digestion of manure alone (P < 0.05). The highest specific H2 and CH4 yields, VS removal and energy yield were 38.2 mL/g VS, 627.6 mL/g VS, 78.4 % and 25,459.8 kJ/kg VS, respectively, in CM:WM 30:70. Lag phases to H2 and CH4 productions were observed in CM–WM mixtures, increased with increasing the amount of WM in the feedstock and were greater than 72 h in CM:WM 50:50 and 30:70. The digestion system failed in CM:WM 10:90. The results suggest that CM:WM 30:70 was optimum, however, due to limited amount of WM usually generated and long lag phase at this ratio which may make the process uneconomical, CM:WM 70:30 is recommended in practice. 相似文献
14.
Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste 总被引:2,自引:0,他引:2
A concept of methane yield at optimum pH was advanced and subsequently a mathematical model that simulates the optimal pH of a batch process for anaerobic digestion of organic fraction of municipal solid waste (MSW) was developed and validated. The model was developed on the basis of the microbial growth kinetics and was divided into three processes: hydrolysis of substrates by hydrolytic bacteria, consumption of soluble substrate by acidogenic bacteria, and finally consumption of acetate and methane generated by methanogenic bacteria. Material balance and liquid phase equilibrium chemistry were used in this study. A series of experiments were conducted to validate the model. The model simulation results agreed reasonably with experimental data in different temperatures and total solid (TS) concentrations under uncontrolled pH. A computer circulation program was used to predict the optimal pH in different conditions. Experiments in different temperatures and TS were run under optimal pH which predicted by the model. The model was succeeded in increasing the methane production and the cumulative methane production had an average increment about 35% in optimal pH of different temperatures and TS. 相似文献
15.
Lipases were produced by a microbial consortium derived from a mixture of wastewater sludges in a medium containing solid industrial wastes rich in fats, under thermophilic conditions (temperature higher than 45 °C for 20 days) in 4.5-L reactors. The lipases were extracted from the solid medium using 100 mM Tris–HCl, pH 8.0 and a cationic surfactant agent (cetyltrimethylammonium chloride). Different doses of surfactant and buffer were tested according to a full factorial experimental design. The extracted lipases were most active at 61–65 °C and at pH 7.7–9. For the solid samples, the lipolytic activity reached up to 120,000 UA/g of dry matter. These values are considerably higher than those previously reported in literature for solid-state fermentation and highlight the possibility to work with the solid wastes as effective biocatalysts. 相似文献
16.
17.
In many respects, hydrogen is an ideal biofuel. However, practical, sustainable means of its production are presently lacking. Here we review recent efforts to apply the capacity of photosynthetic bacteria to capture solar energy and use it to drive the nearly complete conversion of substrates to hydrogen and carbon dioxide. This process, called photofermentation, has the potential capacity to use a variety of feedstocks, including the effluents of dark fermentations, leading to the development of various configurations of two-stage systems, or various industrial and agricultural waste streams rich in sugars or organic acids. The metabolic and enzymatic properties of this system are presented and the possible waste streams that might be successfully used are discussed. Recently, various immobilized systems have been developed and their advantages and disadvantages are examined. 相似文献
18.
The kinetics of batch anaerobic hydrogen production by mixed anaerobic cultures was systemically investigated in this study. Unstructured models were used to describe the substrate utilization, biomass growth and product formation in the hydrogen production process. The relationship between the substrate, biomass and products were also evaluated. Experimental results show that the Michaelis-Menten equation, Logistic model and modified Gompertz equation all could be adopted to respectively describe the kinetics of substrate utilization, biomass growth and product formation. Furthermore, the relationship between the acidogenic products and biomass was simulated by Luedeking-Piret model very well. The experimental results suggest that the formation of hydrogen and the main aqueous products, i.e., butyrate and acetate, was all growth-associated. 相似文献
19.
Mata-Alvarez J 《Biotechnology and bioengineering》1987,30(7):844-851
In this article, a two-phase system for the digestion of wastes with a high solid content is simulated. The solids are charged to the hydrolyzer and then leachate recirculation is activated until biodegradation is nearly complete. Several parameters are tested, namely moisture, leachate recirculation flow rate, and hydrolyzer-methanizer volume ratio. The results show that recirculation rate is an important parameter subject to optimization, with optimal values corresponding to hydrolyzer hydraulic retention times below 1 day. The quantity of recirculating water must be the highest possible. As a consequence, the organic load to the methanizer is reduced, making thus possible the use of a smaller methanizer volume. 相似文献
20.
Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora 总被引:1,自引:0,他引:1
Jae-Il Park Jinwon Lee Sang Jun Sim Jae-Hwa Lee 《Biotechnology and Bioprocess Engineering》2009,14(3):307-315
Hydrogen was produced from various marine macro-algae (seaweeds) through anaerobic fermentation using an undefined bacterial
consortium. In this study, anaerobic fermentation from various marine macro-algae for Ulva lactuca, Porphyra tenera, Undaria pinnatifida, and Laminaria japonica was studied. From this analysis Laminaria japorica was determined to be the optimum substrate for hydrogen production. When L. japornica was used as the carbon source for enhanced hydrogen production, the optimum fermentation temperature, substrate concentration,
initial pH, and pretreatment condition were determined to be 35°C, 5%, 7.5, and BT120 (Ball mill and thermal treatments at
120°C for 30 min), respectively. In addition, hydrogen production was improved when the sludge was heat-treated at 65°C for
20 min. Under these conditions, about 4,164 mL of hydrogen was produced from 50 g/L of dry algae (L. japonica) for 50 h, with a hydrogen concentration around 34.4%. And the maximum hydrogen production rate and yield were found to be
70 mL/L·h and 28 mL/g dry algae, respectively. 相似文献