首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to elucidate the changes in IFNT messenger RNA (mRNA) levels in in vivo–fertilized and parthenogenetic bovine embryos and their interferon-τ (IFNT) secretion amounts during the elongation phase. We assessed the induction capability of maternal recognition of pregnancy by parthenogenetic embryos and attempted cotransfer of in vivo–fertilized and parthenogenetic embryos. The expression level of IFNT mRNA in in vivo–fertilized embryos peaked on Day 18 after estrus, and the highest amount of uterine IFNT was observed on Day 20. Transfer of 10 parthenogenetic embryos produced a detectable amount of uterine IFNT. Transfer of one or three parthenogenetic embryos inhibited luteolysis. An increase in ISG15 mRNA levels in peripheral granulocytes was induced by the transfer of three parthenogenetic embryos. Cotransfer of three parthenogenetic embryos significantly improved the pregnancy rate on Day 40 in code 3 in vivo–fertilized embryos compared with single transfer without parthenogenetic embryos (65% vs. 35%). However, the pregnancy rate on Day 90 (35%) in cotransfer of code 3 in vivo–fertilized embryos did not differ from that upon single transfer (29%), because the cotransfer group had a higher incidence of pregnancy loss than with single transfer (47% vs. 17%) after Day 40. Cotransfer did not affect the pregnancy rate of code 2 in vivo–fertilized embryos. The incidence of pregnancy loss was higher in cotransfer of code 2 in vivo–fertilized embryos than in single transfer (30% vs. 7%). In conclusion, parthenogenetic embryos in the elongation phase secreted IFNT, enabling induction of maternal recognition of pregnancy. The present study revealed that enhancement of the maternal recognition of pregnancy using parthenogenetic embryos promoted the viability of poor-quality embryos until Day 40 of gestation. However, the incidence of pregnancy loss increased after Day 40 in the cotransfer of parthenogenetic embryos. A technique for promoting the full-term survival of poor-quality embryos is needed.  相似文献   

2.
Dissociation of ribosomes and seed germination   总被引:1,自引:1,他引:0       下载免费PDF全文
Ribosomes from rice embryos (Oryza sativa) were dissociated into ribosomal subunits in vitro by systematic reduction of the Mg2+ concentration. Ribosomes from imbibed (28 C) embryos were more easily dissociated than those from nonimbibed embryos. This was not observed with ribosomes from either imbibed, nonviable embryos, or from embryos imbibed at 0 C. Ribosomes from embryos which had been imbided and subsequently dehydrated resembled ribosomes from nonimbibed embryos in their resistance to dissociation. The change in the resistance to dissociation was essentially complete after the first 20 minutes of imbibition at 28 C, and accompanied activation in vivo of protein synthesis as determined by amino acid incorporation in vitro. Ribosomes from either imbibed or nonimbibed embryos could be dissociated into subunits by 0.5 m KCl. These subunits were separated by density gradient centrifugation, and, if recombined, were active for polyphenylalanine synthesis in vitro. The individual subunits prepared from nonimbibed embryos could be replaced by the corresponding subunit fraction from imbibed embryos without loss of capacity to support polyphenylalanine synthesis. The change in the ease of dissociation of ribosomes appears to be a physiological process, and its possible relationship to the initiation of protein synthesis during seed germination is discussed.  相似文献   

3.
4.
为了考察小鼠(Mus musculus)孤雌激活胚胎H3K27三甲基化模式与体内正常胚胎之间的差异,以及曲古抑菌素A(TSA)对孤雌胚H3K27三甲基化水平的影响,探究表观遗传修饰对孤雌胚胎发育的作用。首先,用H3K27me3特异性抗体对MⅡ期卵母细胞染色,利用激光共聚焦对其荧光强度进行检测,结果发现该时期的甲基化荧光强度相对较低。接着,采用同样的方法对小鼠孤雌胚胎和体内正常胚胎植入前各时期的H3K27me3模式进行比较,结果显示,从2-细胞到囊胚期孤雌组呈现逐渐升高的趋势,与体内组变化趋势完全相反,且总体平均荧光强度较体内组普遍偏低。孤雌胚胎经TSA处理后,处理组和未处理组在前三个时期虽然没有显著性差异(P0.05),但是处理之后的H3K27三甲基化水平有所提高,囊胚期与未处理组相比有显著性差异(P0.05)。以上结果表明,小鼠孤雌胚胎的H3K27三甲基化模式与体内胚胎之间存在着巨大的差异,这可能是造成孤雌胚胎发育能力差的重要原因之一。TSA处理对H3K27me3模式造成了一定的影响,使体外培养环境有所改善,这可能对提高孤雌胚胎发育能力具有一定的意义。  相似文献   

5.
Somatic embryogenesis is a powerful tool for plant regeneration and also provides a suitable material for investigating the molecular events that control the induction and development of somatic embryos. This study focuses on expression analysis of the QrCPE gene (which encodes a glycine-rich protein) during the initiation of oak somatic embryos from leaf explants and also during the histodifferentiation of somatic embryos. Northern blot and in situ hybridization were used to determine the specific localisation of QrCPE mRNA. The results showed that the QrCPE gene is developmentally regulated during the histodifferentiation of somatic embryos and that its expression is tissue- and genotype-dependent. QrCPE was strongly expressed in embryogenic cell aggregates and in embryogenic nodular structures originated in leaf explants as well as in the protodermis of somatic embryos from which new embryos are generated by secondary embryogenesis. This suggests a role for the gene during the induction of somatic embryos and in the maintenance of embryogenic competence. The QrCPE gene was highly expressed in actively dividing cells during embryo development, suggesting that it participates in embryo histodifferentiation. The localised expression in the root cap initial cells of cotyledonary somatic embryos and in the root cap of somatic seedlings also suggests that the gene may be involved in the fate of root cap cells.  相似文献   

6.
The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (∼10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).  相似文献   

7.
The cryopreservation of embryos is a technology developed for long-term genetic preservation. However, high sensitivity to low temperatures due to a large number of intracellular lipids within ruminant embryos compromises the success of this technique. The aim of this study was to examine the effects of using of lipolytic chemical agent forskolin, during in vitro producing of buffalo and bovine embryos on lipid contents, cryotolerance and subsequent developmental competence of these embryos. Buffalo and bovine oocytes were collected by the aspiration technique from follicles and submitted for in vitro fertilisation; the embryos were later divided into four experiments. Experiment 1, buffalo and bovine embryos were pre-treated in the presence and absence of 10 μM forskolin for 24 h. Lipid contents were determined by Nile red staining and confocal microscopy. We found that 10 μM forskolin was capable to reduce lipid contents within developing embryos in both of species (P < 0.01). Lipid contents within Day 2 embryos exhibited greater fluorescence intensity than did Day 7 embryos in both animal species. The purpose of Experiment 2 was to investigate the adverse effects of 10 μM forskolin on embryo development. In Experiments 3 and 4, Day 2 (4- to 8-cell stage) and Day 7 (blastocyst stage) embryos were pre-treated with 10 μM forskolin for 24 h and further cryopreserved with a controlled-rate freezing technique. The successful cryopreservation was determined by post-thawed embryonic development in vitro. The results showed that the blastocyst rate of the 4–8 cell stage in the forskolin-treated group had increased in both species, while the hatching and hatched blastocyst rates of forskolin-treated day 7 bovine embryos were significantly higher than those of the non-treated group (52.1% vs. 39.4%; P < 0.05). However, delipidation with forskolin did not affect the developmental rate of the day 7 buffalo embryos (P = 0.73). Our studies showed that delipidation by forskolin treatment increased the survival rate of cryopreservation in buffalo and bovine in vitro produced embryos.  相似文献   

8.
Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.  相似文献   

9.
The aim of the present study was to examine the effects of CUDC-101, a novel histone deacetylase inhibitor, on the in vitro development and expression of the epigenetic marker histone H3 at lysine 9 (AcH3K9) in pig SCNT embryos. We found that treatment with 1 μmol/L CUDC-101 for 24 hours significantly improved the development of pig SCNT embryos. Compared with the control group, the blastocyst rate was higher (18.5% vs. 10.3%; P < 0.05). To assess in vivo developmental potency, CUDC-101–treated SCNT embryos were transferred into two surrogate mothers, resulting in one pregnancy with six fetuses. We then investigated the acetylation level of histone H3K9 in SCNT embryos treated with CUDC-101 and compared them only against untreated embryos. The acetylation level of control SCNT embryos was lower than that of CUDC-101–treated embryos at pseudo-pronuclear stages, and immunofluorescent signal for H3K9ac in CUDC-101–treated embryos in a pattern similar to that of control group. In conclusion, we demonstrated that CUDC-101 can significantly improve in vitro and in vivo developmental competence and enhance the nuclear reprogramming of pig SCNT embryos.  相似文献   

10.
The goldfish (Carassius auratus) Tgf2 transposon is a vertebrate DNA transposon that belongs to the hAT transposon family. In this study, we constructed plasmids containing either the full-length Tgf2 transposon (pTgf2 plasmid) or a partially-deleted Tgf2 transposon (ΔpTgf2 plasmid), and microinjected these plasmids into fertilized zebrafish (Danio rerio) eggs at the one- to two-cell stage. DNA extracted from the embryos was analyzed by PCR to assess transient excision, if any, of the exogenous plasmid and to verify whether Tgf2 is an autonomous transposon. The results showed that excision-specific bands were not detected in embryos injected with the ΔpTgf2 plasmid, while bands of 300–500 bp were detected in embryos injected with pTgf2, which indicated that the full-length Tgf2-containing plasmid could undergo autonomous excision in zebrafish embryos. DNA cloned from 24 embryos injected with pTgf2 was sequenced, and the results suggested that Tgf2 underwent self-excision in zebrafish embryos. Cloning and PCR analysis of DNA extracted from embryos co-injected with ΔpTgf2 and in vitro-transcribed transposase mRNA indicated that partially-deleted-Tgf2-containing ΔpTgf2 plasmid also underwent excision, in the presence of functional transposase mRNA. DNA cloned from 25 embryos co-injected with ΔpTgf2 and transposase mRNA was sequenced, and the results suggested that partially-deleted Tgf2 transposons plasmids were excised. These results demonstrated that excisions of Tgf2 transposons were mediated by the Tgf2 transposase, which in turn confirmed that Tgf2 is an autonomous transposon.  相似文献   

11.
The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid(4n)embryos and produce tetraploid/diploid(4n/2n)chimeric embryos.Different electric feld intensities were tested and 2 direct current(DC)pulses of 0.9 kV/cm for 30 ls was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos.The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos,reached85.4%and 28.5%,respectively.68.18%of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization(FISH).Although the number of blastomeres in 4n blastocysts was signifcantly lower than in 2n blastocysts(P<0.05),there was no signifcant difference in developmental rates of blastocysts between 2n and 4n embryos(P>0.05),suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos.Moreover,4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos.We found that the developmental rate and cell number of blastocysts of 4-cell(4n)/4-cell(2n)chimeric embryos were signifcantly higher than those of 2-cell(4n)/4-cell(2n),4-cell(4n)/8-cell(2n),4-cell(4n)/2-cell(2n)chimeric embryos(P<0.05).Consistent with mouse chimeras,the majority of 4n cells contribute to the trophectoderm(TE),while the 2n cells are mainly present in the inner cell mass(ICM)of porcine4n/2n chimeric embryos.Our study established a feasible and effcient approach to produce porcine4n embryos and 4n/2n chimeric embryos.  相似文献   

12.
13.
Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.  相似文献   

14.
Previous trials achieved extremely poor results when using the one-step warming method in a syringe in combination with non-surgical deep intrauterine transfer (NET) of superfine open pulled straw (SOPS)-vitrified embryos. This study aimed to assess the effect of the warming procedure on the in vitro and in vivo development of SOPS-vitrified embryos. The effect of the passage of the vitrified-warmed (VW) embryos through the NET catheter was also evaluated. Groups of 4 to 6 morulae and blastocysts, collected from weaned sows, were SOPS-vitrified in 1 μL of vitrification medium, warmed by the one-step warming method in a dish or in a 1-mL syringe and cultured in vitro for 48 h to evaluate the embryo survival (ES) and hatching rates (HR). Warming in syringe had a deleterious effect (P < 0.05) on the in vitro ES (60.5 ± 10.4%) and HR (39.6 ± 9.5%) of VW embryos in comparison with embryos warmed in a dish (85.4 ± 10.6% and 69.0 ± 8.4%, respectively). This decreased embryonic development was due to the increased time required between the removal of the straws from the liquid nitrogen and the contact of the embryos with the warming medium when the warming was performed in a syringe in comparison with that for the warming in a dish. After verifying that the passage of VW embryos through the NET catheter does not have a damaging effect on their further in vitro development, the negative effect of warming in a syringe was also confirmed after NET. Fifteen fresh and SOPS-vitrified embryos warmed in a syringe or in a dish were transferred to each recipient (n = 28) and recovered 24 h later to assess their developmental progression. All embryos from the syringe group were found to have degenerated at recovery. The in vivo ES and HR from the dish group (80.4 ± 3.4% and 14.2 ± 7.2%, respectively) were lower (P < 0.05) than those from the fresh group (94.0 ± 4.1% and 36.8 ± 7.8%, respectively). Combining the warming in a dish and the NET procedure, 35 VW embryos were transferred to each of 10 gilts. Five recipients farrowed an average of 10.4 ± 0.9 piglets. In conclusion, the method of one-step warming in a syringe has a negative effect on the in vitro and in vivo viability of SOPS-vitrified porcine embryos. In addition, NET of SOPS-vitrified embryos warmed by the one-step method in a dish showed promising reproductive performance of recipients. However, despite the great potential of this technology, further developments are required for large-scale commercial applications.  相似文献   

15.
Five-hundred-and-ninety-five rabbit embryos at the 2- to 4-cell stage were cultured for 48 h to the morula stage. One-hundred-and-sixty-three embryos were transferred directly after culture while the rest (432) were frozen to −196°C. The development of these embryos was tested by transfer into synchronized pseudopregnant recipients or into pseudopregnant recipients 24 h before synchrony. The results were determined at day 17 of pregnancy. The transfer of cultured embryos into synchronized recipients gave a higher survival rate than transfer into asynchronized recipients (51 vs. 15%; P<0.05). The freezing of cultured embryos affected in vitro and in vivo development. Only 56% of the frozen-thawed morulae developed to the blastocyst stage compared with 89% in the control group (P<0.005). The survival rate after synchronous transfer was only 14%. Our results indicate that rabbit embryos need asynchronous conditions when they are frozen and cultured. Embryo survival rate was enhanced by 38% (P<0.07) when these cultured frozen-thawed embryos were transferred into pseudopregnant recipients in an earlier physiological stage (−24 h).  相似文献   

16.
Anthers ofLycium halimifolium were grownin vitro at the following stages of development: tetrads, microspores and binucleate pollen grains. Pollen plantlets were obtained only from anthers inoculated at the stage of microspores. The growth of androgenic embryos was very slow. Mature embryos were formed in about 3% of the inoculated anthers. The largest number of embryos obtained from one anther was 4.  相似文献   

17.
Implantation failure is a major problem in human assisted reproduction, which persists regardless the optimization of endometrial receptivity and selection of genetically and morphologically healthy embryos. Since embryo-endometrium interaction depends on cell junctional, cell adhesion and cell-substratum adhesion molecules, the present study inquired whether in vitro growing murine embryos display similar to the in vivo growing embryos patterns of adhesion molecules. To this extend aVb3 expression and distribution in zygotes and 2-cell stage embryos were studied. The results demonstrated that only the in vivo growing embryos displayed specifically polarized aVb3 distribution, indicating their potential successful interaction with endometrium. Based on previous studies showing that L-carnitine (L-Cn) could affect embryonic development, it was demonstrated that the addition of L-Cn to the culture medium, could lead the in vitro growing embryos to acquire aVb3 expression and distribution similar to the in vivo growing embryos. Visualization of the effect of L-Cn using third harmonic generation imaging showed decreased lipid droplet levels in 2-cell-stage embryos, observation that correlates with an active energetic state of the growing embryos. Thus, the application of L-Cn to the culture medium could assist pre-implantation-state embryos to acquire aVb3 expression and distribution similar to the in vivo developing conditions.  相似文献   

18.
19.
Pituitary adenylate cyclase activating polypeptide (PACAP) was originally isolated as a hypothalamic neuropeptide stimulating adenylate cyclase activity. Besides its neuroprotective effects, numerous data proved its role in reproductive processes. However, there are limited data on its role in preimplantation embryo development and implantation. Our aim was to analyse the mRNA expression of Adcyap1 (coding region of PACAP) and Hbegf [coding region of HB-EGF (Heparin-binding EGF-like growth factor)] in embryos and pregnant uterus to investigate the possible correlation between them. Eight-week-old BDF1 mice were superovulated and subsequently mated overnight or left in their cage after hCG treatment. Day4 embryos were flushed from mated females. After morphological analysis, Adcyap1 and Hbegf gene expression of embryos and uterine tissues was assessed with qPCR.Our results showed significantly higher Adcyap1 and Hbegf mRNA levels in females producing embryos compared to non-mated ones. Robust elevation of Adcyap1 and slight elevation of Hbegf were detected in females with blastocyst embryos compared with non-blastocysts. We found low rate of Hbegf mRNA expression in uncompacted embryos, whereas morulae and blastocysts expressed high amounts of Hbegf. However, we did not find detectable Adcyap1 mRNA in embryos. Strong correlation was found between uterine tissue and embryonic Hbegf levels, slight correlation between uterine Adcyap1 and Hbegf levels. Uterine tissue Adcyap1 and embryonic Hbegf showed no correlation. In summary, our present data show, for the first time, the correlation between PACAP and HB-EGF mRNA expression suggesting that PACAP might play a role during the peri-implantation period of early mouse embryo development.  相似文献   

20.
DNA active demethylation is an important epigenetic phenomenon observed in porcine zygotes, yet its molecular origins are unknown. Our results show that 5-methylcytosine (5mC) converts into 5-hydroxymethylcytosine (5hmC) during the first cell cycle in porcine in vivo fertilization (IVV), IVF, and SCNT embryos, but not in parthenogenetically activated embryos. Expression of Ten-Eleven Translocation 1 (TET1) correlates with this conversion. Expression of 5mC gradually decreases until the morula stage; it is only expressed in the inner cell mass, but not trophectoderm regions of IVV and IVF blastocysts. Expression of 5mC in SCNT embryos is ectopically distinct from that observed in IVV and IVF embryos. In addition, 5hmC expression was similar to that of 5mC in IVV cleavage-stage embryos. Expression of 5hmC remained constant in IVF and SCNT embryos, and was evenly distributed among the inner cell mass and trophectoderm regions derived from IVV, IVF, and SCNT blastocysts. Ten-Eleven Translocation 3 was highly expressed in two-cell embryos, whereas TET1 and TET2 were highly expressed in blastocysts. These data suggest that TET1-catalyzed 5hmC may be involved in active DNA demethylation in porcine early embryos. In addition, 5mC, but not 5hmC, participates in the initial cell lineage specification in porcine IVV and IVF blastocysts. Last, SCNT embryos show aberrant 5mC and 5hmC expression during early porcine embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号