首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon-inducible p47 GTPases are critical mediators of cell-autonomous resistance against several intracellular pathogens. Here we present the first crystal structure of a member of this novel GTPase family, IIGP1, in its nucleotide-free, GDP-, and GppNHp-bound form. The structure shows a Ras-like G domain between an N-terminal three-helix bundle and a complex system of C-terminal helices and loops. Sequence comparison and secondary structure prediction suggest the IIGP1 structure to be a valid model for the p47 GTPase family. The IIGP1 crystals contain a noncrystallographic dimer. We show that the dimer is required for cooperative GTP hydrolysis and GTP-dependent oligomerization of IIGP1. We also present the GDP- and GppNHp-bound monomeric structures of two dimer interface mutants. Our structures direct approaches to the analysis of the catalytic mechanism of IIGP1 and provide a coherent basis for structure-function studies aimed at elucidating the mechanistic basis of pathogen resistance caused by these enigmatic GTPases.  相似文献   

2.
IRG proteins (also known as p47 GTPases) are key mediators of interferon-gamma-induced resistance to pathogens. Absence of certain IRG proteins leads to profound susceptibility to protozoa and bacteria in mice. Underlying their roles in host resistance, IRG proteins regulate the processing of pathogen-containing vacuoles in host cells, and regulate hematopoiesis following infection.  相似文献   

3.
The p47 GTPases are essential for interferon-gamma-induced cell-autonomous immunity against the protozoan parasite, Toxoplasma gondii, in mice, but the mechanism of resistance is poorly understood. We show that the p47 GTPases, including IIGP1, accumulate at vacuoles containing T. gondii. The accumulation is GTP-dependent and requires live parasites. Vacuolar IIGP1 accumulations undergo a maturation-like process accompanied by vesiculation of the parasitophorous vacuole membrane. This culminates in disruption of the parasitophorous vacuole and finally of the parasite itself. Over-expression of IIGP1 leads to accelerated vacuolar disruption whereas a dominant negative form of IIGP1 interferes with interferon-gamma-mediated killing of intracellular parasites. Targeted deletion of the IIGP1 gene results in partial loss of the IFN-gamma-mediated T. gondii growth restriction in mouse astrocytes.  相似文献   

4.
IRG proteins (also known as p47 GTPases) are key mediators of interferon-γ-induced resistance to pathogens. Absence of certain IRG proteins leads to profound susceptibility to protozoa and bacteria in mice. Underlying their roles in host resistance, IRG proteins regulate the processing of pathogen-containing vacuoles in host cells, and regulate hematopoiesis following infection.  相似文献   

5.
6.
We report the novel observation that engagement of β2 integrins on human neutrophils is accompanied by increased levels of the small GTPases Rap1 and Rap2 in a membrane-enriched fraction and a concomitant decrease of these proteins in a granule-enriched fraction. In parallel, we observed a similar time-dependent decrease of gelatinase B (a marker of specific and gelatinase B-containing granules) but not myeloperoxidase (a marker of azurophil granules) in the granule fraction, and release of lactoferrin (a marker of specific granules) in the extracellular medium. Furthermore, inhibition of Src tyrosine kinases, or phosphoinositide 3-kinase with PP1 or LY294002, respectively, blocked β2 integrin-induced degranulation and the redistribution of Rap1 and Rap2 to a membrane-enriched fraction. Consequently, the β2 integrin-dependent exocytosis of specific and gelatinase B-containing granules occurs via a Src tyrosine kinase/phosphoinositide 3-kinase signaling pathway and is responsible for the translocation of Rap1 and Rap2 to the plasma membrane in human neutrophils.  相似文献   

7.
Phagocytic NADPH oxidase plays a critical role in superoxide generation in macrophage cells. Small GTPases, including Rac1 and Rac2, have been implicated in the regulation of NADPH oxidase activity. Rap1, which has no effect in a cell-free system of oxidase activation, recently has been proven to colocalize with cytochrome b(558). In addition, neutrophils from rap1A(-/-) mice reduce fMLP-stimulated superoxide production. Here, we tried to determine whether Rap1 also plays a role in the production of superoxide. IgG-opsonized zymosan (IOZ) particles treatment induced Rap1 activation and superoxide generation. Knock-down of Rap1 by si-Rap1 suppressed IOZ-induced superoxide formation. Sh-RhoA also reduced superoxide levels, but 8CPT-2Me-cAMP, an activator of Epac1 (a guanine nucleotide exchange factor (GEF) of Rap1), could recover the levels to the control value. When cells were stimulated by IOZ, Rap1 and Rac1 were translocated to the membrane, and then interacted with p22(phox). 8CPT-2Me-cAMP rescued sh-RhoA-induced reduction of the interaction between Rac1 and p22(phox), and enhanced lysophosphatidic acid (LPA)-induced increase of their interaction. Moreover, Rac1 activity was increased by both LPA and 8CPT-2Me-cAMP when treated with IOZ particles. Si-Vav2 impaired GTP-Rac1 levels in response to 8CPT-2Me-cAMP/IOZ. Phosphorylation of RhoA activates Rac1 in response to IOZ by the enhanced binding of phospho-RhoA to RhoGDI, leading to the release of Rac1 from the Rac1-RhoGDI complex. In conclusion, IOZ treatment induces Rap1 activation and phosphorylation of RhoA, which in turn cause Rac1 activation and promote Rac1 translocation to the membrane leading to binding with p22(phox) that activates NADPH oxidase and produces superoxide.  相似文献   

8.

Background  

Members of the p47 (immunity-related GTPases (IRG) family) GTPases are essential, interferon-inducible resistance factors in mice that are active against a broad spectrum of important intracellular pathogens. Surprisingly, there are no reports of p47 function in humans.  相似文献   

9.
Two highly purified plasma membrane fractions have been obtained from mouse parotid glands by a combination of differential centrifugation and isopycnic centrifugation in discontinuous sucrose gradients. The membranes were characterized by enzymic, chemical and morphological criteria. The effect of isoproterenol, which induces parotid acinar cells to proliferate, upon sialic acid and five different enzyme activities located in the plasma membrane phosphodiesterase (EC 3.1.4.1), Mg2+-ATPase (EC 3.6.1.4), leucine aminopeptidase (EC 3.4.1.1), protein kinase (EC 2.7.1.37) and sialyltransferase (EC 2.4.99.1), were quantified along the cell cycle. Plasma membrane sialic acid content falls 30% within 30 min and remains depressed for at least 6 h with the major restoration towards normal levels occurring between 12 and 16 h later. In contrast multiple daily isoproterenol injections lead to a more than 2-fold elevation of sialic acid content. Sialyltransferase activity rises 2-fold by 12 h after isoproterenol treatment and then rapidly falls. This enzyme has a pH optimum of 6.5, requires a divalent cation for activity and is inhibited by Triton X-100. Other enzyme activities showed markedly different changes after isoproterenol stimulation, either increasing, decreasing or remaining unaltered. These continuous functional modifications suggest an active role of the plasma membrane in the control of the proliferative cycle.  相似文献   

10.
X Yang  H T Matern    D Gallwitz 《The EMBO journal》1998,17(17):4954-4963
The regulation of vesicular transport in eukaryotic cells involves Ras-like GTPases of the Ypt/Rab family. Studies in yeast and mammalian cells indicate that individual family members act in vesicle docking/fusion to specific target membranes. Using the two-hybrid system, we have now identified a 248 amino acid, integral membrane protein, termed Yip1, that specifically binds to the transport GTPases Ypt1p and Ypt31p. Evidence for physical interaction of these GTPases with Yip1p was also demonstrated by affinity chromatography and/or co-immunoprecipitation. Like the two GTPases, Yip1p is essential for yeast cell viability and, according to subcellular fractionation and indirect immunofluorescence, is located to Golgi membranes at steady state. Mutant cells depleted of Yip1p and conditionally lethal yip1 mutants at the non-permissive temperature massively accumulate endoplasmic reticulum membranes and display aberrations in protein secretion and glycosylation of secreted invertase. The results suggests for a role for Yip1p in recruiting the two GTPases to Golgi target membranes in preparation for fusion.  相似文献   

11.
It has been reported that Gap1p on the plasma membrane of Saccharomyces cerevisiae can catalyze the uptake of many kinds of amino acids. In the present study, we found that Gap1p also catalyzed the uptake of putrescine and spermidine, but not spermine. The Km and Vmax values for putrescine and spermidine were 390 and 21 microM, and 4.6 and 0.59 nmol/min/mg protein, respectively. The uptake of putrescine was strongly inhibited by basic amino acids, lysine, arginine, and histidine, whose Ki values were 25-35 microM. Thus, it is deduced that spermidine and basic amino acids have almost the same affinity for Gap1p. When the concentrations of amino acids in the medium were reduced to one-third and 0.5 mM putrescine or 0.1 mM spermidine was added to the medium, accumulation of putrescine or spermidine by Gap1p was observed. Furthermore, when yeast was transformed with the GAP1 gene and cultured in the presence of 60 mM putrescine, cell growth was inhibited through overaccumulation of putrescine. GAP1 mRNA was found to be induced by polyamines. This is the first report of the identification, at a molecular level, of a polyamine uptake protein on the plasma membrane in eukaryotes.  相似文献   

12.
In the phagocytic cell, NADPH oxidase (Nox2) system, cytoplasmic regulators (p47(phox), p67(phox), p40(phox), and Rac) translocate and associate with the membrane-spanning flavocytochrome b(558), leading to activation of superoxide production. We examined membrane targeting of phox proteins and explored conformational changes in p40(phox) that regulate its translocation to membranes upon stimulation. GFP-p40(phox) translocates to early endosomes, whereas GFP-p47(phox) translocates to the plasma membrane in response to arachidonic acid. In contrast, GFP-p67(phox) does not translocate to membranes when expressed alone, but it is dependent on p40(phox) and p47(phox) for its translocation to early endosomes or the plasma membrane, respectively. Translocation of GFP-p40(phox) or GFP-p47(phox) to their respective membrane-targeting sites is abolished by mutations in their phox (PX) domains that disrupt their interactions with their cognate phospholipid ligands. Furthermore, GFP-p67(phox) translocation to either membrane is abolished by mutations that disrupt its interaction with p40(phox) or p47(phox). Finally, we detected a head-to-tail (PX-Phox and Bem1 [PB1] domain) intramolecular interaction within p40(phox) in its resting state by deletion mutagenesis, cell localization, and binding experiments, suggesting that its PX domain is inaccessible to interact with phosphatidylinositol 3-phosphate without cell stimulation. Thus, both p40(phox) and p47(phox) function as diverse p67(phox) "carrier proteins" regulated by the unmasking of membrane-targeting domains in distinct mechanisms.  相似文献   

13.
TRPC1, a component of store-operated Ca2+ entry (SOCE) channels, is assembled in a complex with caveolin-1 (Cav1) and key Ca2+ signaling proteins. This study examines the role of Cav1 in the function of TRPC1. TRPC1 and Cav1 were colocalized in the plasma membrane region of human submandibular gland and Madin-Darby canine kidney cells. Full-length Cav1 bound to both the N and C termini of TRPC1. Amino acids 271-349, which includes a Cav1 binding motif (amino acids 322-349), was identified as the Cav1 binding domain in the TRPC1 N terminus. Deletion of amino acids 271-349 or 322-349 prevented plasma membrane localization of TRPC1. Importantly, TRPC1Delta271-349 induced a dominant suppression of SOCE and was associated with wild-type TRPC1. Although the role of the C-terminal Cav1 binding domain is not known, its deletion did not affect localization of TRPC1 (Singh, B. B., Liu, X., and Ambudkar, I. S. (2000) J. Biol. Chem. 275, 36483-36486). Further, expression of a truncated Cav1 (Cav1Delta51-169), but not full-length Cav1, similarly disrupted plasma membrane localization of endogenously and exogenously expressed TRPC1 in human submandibular gland and Madin-Darby canine kidney cells. Cav1Delta51-169 also suppressed thapsigarginand carbachol-stimulated Ca2+ influx and increased the detergent solubility of TRPC1, although plasma membrane lipid raft domains were not disrupted. These data demonstrate that plasma membrane localization of TRPC1 depends on an interaction between its N terminus and Cav1. Thus, our data suggest that Cav1 has an important role in the assembly of SOCE channel(s).  相似文献   

14.
Marcon E  Moens P 《Genetics》2003,165(4):2283-2287
With the phosphatase inhibitor, okadaic acid, we induce the precocious onset of the chiasmate stage and under those conditions show that the recombination nodules, MLH1 and MLH3 foci, are localized to the chiasmata. It is concluded that MLH1/3 foci are appropriate markers for the studies of crossovers/chiasmata development and distribution at late meiotic prophase.  相似文献   

15.
16.
VP40, the matrix protein of Marburg virus, is a peripheral membrane protein that has been shown to associate with membranes of multivesicular bodies (MVBs) (L. Kolesnikova, H. Bugany, H.-D. Klenk, and S. Becker, J. Virol. 76:1825-1838, 2002). The present study revealed that VP40 is bound to cellular membranes rapidly after synthesis. Time course studies were performed to trace the distribution of VP40 during the course of expression. First, VP40 was homogenously distributed throughout the cytoplasm, although the majority of protein (70%) was already membrane associated. Next, VP40 accumulated in MVBs and in tubular protrusions emerging from MVBs. Finally, VP40 appeared in a patch-like pattern beneath the plasma membrane. These morphological results were supported by iodixanol density gradient analyses. The majority of VP40-positive membranes were first detected comigrating with small vesicles. VP40 was then shifted to fractions containing endosomal marker proteins, and later, to fractions containing plasma membrane marker proteins. Blocking of protein synthesis by use of cycloheximide at the time when VP40 was mainly associated with the small vesicles did not prevent the redistribution of VP40 to the late endosomes and further to the plasma membrane. The inhibition of intracellular vesicular trafficking by monensin significantly reduced the appearance of VP40 at the plasma membrane. In conclusion, we suggest that the transport of the Marburg virus matrix protein VP40 involves its accumulation in MVBs followed by the redistribution of VP40-enriched membrane clusters to the plasma membrane.  相似文献   

17.
Human neutrophil respiratory burst oxidase (NADPH-oxidase) activity can be reconstituted in a cell-free system consisting of plasma membrane, cytosol and an anionic amphiphile [e.g., sodium dodecyl sulfate (SDS) or arachidonate]. Herein, we report reconstitution of oxidase activity using isolated neutrophil plasma membrane together with purified recombinant p47-phox and p67-phox which had been produced using a baculovirus expression system. Activity required an anionic amphiphile (SDS or arachidonate) and was potentiated by diacylglycerol and GTP gamma S. Serial washes of the plasma membrane failed to affect its ability to reconstitute activity, indicating that a dissociable membrane component was not present. The Km for NADPH, 43 microM, was the same as that determined using cytosol in place of recombinant factors. The EC50 values for p47-phox and p67-phox under optimal activation conditions were 220 nM and 80 nM, respectively, indicating a relatively high affinity of these components in an activation complex. Since neither cytosolic component contains a nucleotide binding consensus sequence, these data indicate that the NADPH binding component of the oxidase resides in the plasma membrane.  相似文献   

18.
C Bron  H R MacDonald 《FEBS letters》1987,219(2):365-368
The plasma membrane receptor for interleukin-1 (IL-1) has been characterized from mouse EL4-6.1 thymoma cells. Following binding of IL-1 to surface labeled EL4-6.1 cells, the IL-1 binding molecule was immuno-precipitated using a rabbit antiserum against the hormone. The putative IL-1 receptor is a membrane-associated glycopeptide of Mr = 82,000 containing probably two or three N-linked glycan units as indicated by its conversion into a Mr = 60,000 polypeptide upon deglycosylation with endo-beta-N-glycosidase F.  相似文献   

19.
We previously found that homocysteine (Hcy) induced plasma membrane flip-flop, apoptosis, and necrosis in cardiomyocytes. Inactivation of flippase by Hcy induced membrane flip-flop, while apoptosis was induced via a NOX2-dependent mechanism. It has been suggested that S-adenosylhomocysteine (SAH) is the main causative factor in hyperhomocysteinemia (HHC)-induced pathogenesis of cardiovascular disease. Therefore, we evaluated whether the observed cytotoxic effect of Hcy in cardiomyocytes is SAH dependent. Rat cardiomyoblasts (H9c2 cells) were treated under different conditions: (1) non-treated control (1.5 nM intracellular SAH with 2.8 μM extracellular L -Hcy), (2) incubation with 50 μM adenosine-2,3-dialdehyde (ADA resulting in 83.5 nM intracellular SAH, and 1.6 μM extracellular L -Hcy), (3) incubation with 2.5 mM D, L -Hcy (resulting in 68 nM intracellular SAH and 1513 μM extracellular L -Hcy) with or without 10 μM reactive oxygen species (ROS)-inhibitor apocynin, and (4) incubation with 100 nM, 10 μM, and 100 μM SAH. We then determined the effect on annexin V/propodium iodide positivity, flippase activity, caspase-3 activity, intracellular NOX2 and p47(phox) expression and localization, and nuclear ROS production. In contrast to Hcy, ADA did not induce apoptosis, necrosis, or membrane flip-flop. Remarkably, both ADA and Hcy induced a significant increase in nuclear NOX2 expression. However, in contrast to ADA, Hcy additionally induced nuclear p47(phox) expression, increased nuclear ROS production, and inactivated flippase. Incubation with SAH did not have an effect on cell viability, nor on flippase activity, nor on nuclear NOX2-, p47phox expression or nuclear ROS production. HHC-induced membrane flip-flop and apoptosis in cardiomyocytes is due to increased Hcy levels and not primarily related to increased intracellular SAH, which plays a crucial role in nuclear p47(phox) translocation and subsequent ROS production.  相似文献   

20.
目的探讨微小RNA-142-3p(miR-142-3p)对过氧化氢诱导的心肌细胞损伤的影响及其作用机制。 方法构建氧化应激损伤模型,以H9C2心肌细胞为研究对象,实验将心肌细胞转染后分为正常对照组、H2O2组、H2O2+miR-142-3p组、H2O2+miR阴性对照组、H2O2+?si-?ELAVL1组、H2O2+siRNA对照组、H2O2+miR-142-3p+pcDNA-ELAVL1组、H2O2+miR-?142-3p+pcDNA组。分别采用qRT-PCR与Western Blot检测细胞中miR-142-3p与ELAVL1表达;检测各组活性氧(ROS)生成水平;MTT检测细胞存活率,流式细胞术检测细胞凋亡。双荧光素酶报告实验验证miR-142-3p与ELAVL1的靶向作用。Western Blot检测细胞中Cleaved Caspase-3、STAT3、Caspase-3、p-STAT3蛋白表达。两组间比较采用两样本t检验;多组间比较采用单因素方差分析,两两比较采用LSD-t检验。 结果H2O2组心肌细胞中miR-142-?3p(0.26±0.06)、p-STAT3表达水平(0.36±0.04)、细胞存活率(61.73±6.48)﹪与正常对照组相比下降(P均< 0.01),而ROS水平(1?566.38±121.57)、细胞凋亡率(27.46±1.73)﹪、Cleaved Caspase-3(0.68±0.08)及ELAVL1表达水平(4.23±0.31)均升高(P均< 0.01);双荧光素酶报告实验证实ELAVL1是miR-142-3p的靶基因;miR-142-3p过表达或沉默ELAVL1表达可明显促进心肌细胞存活、上调p-STAT3表达,而抑制细胞凋亡及Cleaved Caspase-3表达;ELAVL1过表达可逆转miR-142-3p对过氧化氢处理H9C2细胞的保护作用。 结论miR-142-?3p可通过抑制ELAVL1表达进而减轻过氧化氢诱导的心肌细胞损伤,其可能通过影响STAT3信号通路而保护心肌细胞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号