首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To determine Na+/H+ exchange in lamprey erythrocyte membranes, the cells were acidified to pH(i) 6.0 using the K+/H+ ionophore nigericin. Incubation of acidified erythrocytes in a NaCl medium at pH 8.0 caused a considerable rise in 22Na+ influx and H+ efflux during the first 1 min of exposure. In addition, exposure of acidified red cells to NaCl medium was associated with rapid elevation of intracellular Na+ content. The acid-induced changes in Na+ influx and H+ efflux were almost completely inhibited by amiloride and dimethylamiloride. In native lamprey erythrocytes, amiloride-sensitive Na+ influx progressively increased as the osmolality of incubation medium was increased by addition of 100, 200, or 300 mmol/l sucrose. Unexpectedly, the hypertonic stress induced a small, yet statistically significant decrease in intracellular Na+ content in these cells. The reduction in the cellular Na+ content increased with hypertonicity of the medium. The acid- and shrinkage-induced Na+ influxes were inhibited by both amiloride and 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) in a dose-dependent manner. For both blockers, the half-maximal inhibitory values (IC50) were much greater for the shrinkage-induced (44 and 15 micromol/l for amiloride and EIPA, respectively) than for the acid-induced Na+ influx (5.1 and 3.3 micromol/l, respectively). The data obtained are the first demonstration of the presence of a Na+/H+ exchanger with high activity in acidified (pH(i) 6.0) lamprey red blood cells (on average, 512 +/- 56 mmol/l cells/h, n = 13). The amiloride-sensitive Na+ influxes produced by hypertonic cell shrinkage and acid load are likely to be mediated by distinct ion transporters in these cells.  相似文献   

2.
3.
The response of the small intestine in the vitamin D-deficient rat to a single intrajugular injection of 1,25-dihydroxyvitamin D3 has been studied. The time course of 1,25-dihydroxyvitamin D3-induced transport suggests that two separate responses occur. The first or initial response reaches a maximum at 6 h after 1,25-dihydroxy vitamin D3 administration, decays, and is effectively gone by 12 h postinjection. This response does not appear to be associated with alkaline phosphatase activity. The second or late response first appears roughly 12 h after dosing, reaches a maximum at 24 h, and remains elevated for up to 72 h. This response is accompanied by an elevation of alkaline phosphatase activity and appears to be mediated through the action of 1,25-dihydroxyvitamin D3 on the absorptive cell during its normal differentiation and migration up the villus.  相似文献   

4.
5.
6.
7.
Exogenous diamines and polyamines added to rat hepatoma (HTC) cells in culture rapidly decrease ornithine decarboxylase (ODC) activity. Previous evidence has suggested that these amines set either at the level of blocking new enzyme synthesis or by the induction of a non-competitive protein inhibitor, termed antizyme, which complexes with ODC to form an inactive complex. Wth the use of HMOA cells, a recently cloned rat hepatoma cell line that has a greatly stabilized ODC, it has been possible to demonstrate that 10(-5) M of exogenous putrescine blocks the increase in ODC activity, but unlike in the parent HTC cell line, without induction of the antizyme or formation of any inactive ODC-antizyme complex. However, complete blockade of ODC at 10(-2) M putrescine is effected by induction of antizyme and formation of the ODC-antizyme complex, as now evidenced by the isolation of the active enzyme and antizyme components after Sephadex column chromatography in the presence of 250 mM NaCl. These findings indicate clearly that two polyamine-regulatory mechanisms for ODC exist and are separable in this cell line.  相似文献   

8.
Transport of 2-deoxy-d-glucose (2-dGlc) and 6-deoxy-d-glucose (6-dGlc) is studied in Kluyveromyces marxianus, grown under different conditions. It is shown that early stationary phase cells contain only one glucose transporter, with low affinity for 6-dGlc and high affinity for 2-dGlc. This transporter is recognized by glucose and fructose. In late stationary phase cells, two transport systems are operative for 6-dGlc, one with a high and one with a low affinity. The high-affinity system appears to be a glucose-galactose carrier, catalyzing uphill transport, energized by coupling sugar transport to translocation of protons. Induction (or derepression) of the high-affinity 6-dGlc transport seems to be coupled, in an as yet unknown way, to citrate consumption and a strong alkalinization of the medium during growth. It is concluded that glucose transport in K. marxianus can proceed by at least two mechanisms: a glucose-fructose carrier, probably having phosphotransferase characteristics, and a derepressible glucose/galactose-proton symporter.  相似文献   

9.
A range of short-chain aliphatic monocarboxylates, both unsubstituted and substituted with hydroxy, chloro and keto groups, were shown to inhibit transport of L-lactate and pyruvate into both guinea-pig cardiac myocytes and rat erythrocytes. The carrier of heart cells exhibited a higher affinity (approx. 10-fold) for most of the monocarboxylates than did the erythrocyte carrier. A notable exception was L-lactate, whose Km for both carriers was similar. The K1 values of the two carriers for inhibitors such as phenylpyruvate and alpha-cyanocinnamate derivatives were also different. The high affinity of the heart cell carrier for ketone bodies and acetate may be physiologically important, since these substrates are used as fuels by the heart.  相似文献   

10.
Incubation of chick embryo fibroblasts in glucose-free medium resulted in a dramatic increase in the rate of 2-deoxy-D-glucose transport. The greatest increase in rate occurred during the first 20 hours of incubation in glucose-free medium and was blocked by actinomycin D, dordycepin, or cycloheximide. The conditions of 2-deoxy-D-glucose concentration and time of incubation with the sugar were determined where transport rather than phosphorylation was rate-limiting in sugar uptake. These studies demonstrated that the transport of 2-deoxy-D-glucose was rate-limiting for only 1 or 2 min when the concentration of sugar in the medium was near the Km for transport, i.e. 2mM. No difference was found in the level of hexokinase activity in homogenates prepared from cells incubated glucose-free medium or standard medium when either 2-deoxy-D-[14C]glucose or D-glucose was used as substrate. A kinetic analysis of the initial rates of 2-deoxy-D-glucose transport by Lineweaver-Burk plots showed that the Vmax for sugar transport increased from 18 to 95 nmol per mg of protein per min when fibroblasts were incubated in glucose-free medium for 40 hours. The Km remained constant at 2 mM. Analysis of the initial rates of 3-omicron-methyl-D-glucose transport by Lineweaver-Burk plots further substantiated that the increase in sugar transport was due to an increase in the Vmax for transport with the Km remaining constant. The activation energy for the transport reaction calculated from an Arrhenius plot was 17.4 Cal per mol for cells cultured in the standard medium and 17.2 Cal per mol for cells cultured in the glucose-free medium. These results are consistent with the interpretation that the Vmax increase observed in hexose-starved cells is due to an increase in the number of transport sites.  相似文献   

11.
12.
Synthesis of the hexosephosphate transport system in Escherichia coli required the cyclic AMP-receptor protein regulatory complex. The apparent Km value for hexosephosphate activity was affected by the level of phosphate in the uptake environment.  相似文献   

13.
Intestinal absorption offolates has been characterized as a facilitative process with a low pHoptimum. Studies with intestinal epithelial cells have suggested thatthis activity is mediated by the reduced folate carrier (RFC1). In thispaper, we report on folate transport characteristics in an immortalizedrat IEC-6 cell line that was found to exhibit the predominant influxactivity for methotrexate (MTX) at pH 5.5 with a low level of activity at pH 7.4. Transfection of this cell line with an RFC1 construct resulted in clones exhibiting increased MTX uptake at both the pHs andhigh folic acid uptake only at the low pH. For the two clones with thehighest level of transport activity, relative MTX influx at the two pHswas reversed. Moreover, the low pH MTX influx activity([MTX]e = 0.5 µM) was markedly inhibited by 20 µM folic acid while influx at neutral pH was not. Furthermore, in thepresence and absence of glucose at low pH, MTX and folic acid influxactivity was inhibited by azide, while MTX influx at pH 7.4 wasstimulated by azide in the absence of glucose but was unchanged in thepresence of glucose and azide. This was contrasted with the results oftransfection of the same RFC1 construct into an L1210 murine leukemiacell line bearing a nonfunctional endogenous carrier. In this case, theactivity expressed was only at pH 7.4. These data indicate that RFC1can exhibit two distinct types of folate transport activities inintestinal cells that must depend on tissue-specific modulators.

  相似文献   

14.
Transport of adenine and hypoxanthine in human erythrocytes proceeds via two mechanisms: (1) a common carrier for both nucleobases and (2) unsaturable permeation 4-5-fold faster for adenine for hypoxanthine. The latter process was resistant to inactivation by diazotized sulfanilic acid. Carrier mediated transport of both substrates was investigated using zero-trans and equilibrium exchange protocols. Adenine displayed a much higher affinity for the carrier (Km approximately 5-8 microM) than hypoxanthine (Km approximately 90-120 microM) but maximum fluxes at 25 degrees C were generally 5-10-fold lower for adenine (Vmax approximately 0.6-1.4 pmol/microliters per s) than for hypoxanthine (Vmax approximately 9-11 pmol/microliters per s). The carrier behaved symmetrically with respect to influx and efflux for both substrates. Adenine, but not hypoxanthine reduced carrier mobility more than 10-fold. The mobility of the unloaded carrier, calculated from the kinetic data of either hypoxanthine or adenine transport, was the same thus providing further evidence that these substrates share a common transporter and that their membrane transport is adequately described by the alternating conformation model of carrier-mediated transport.  相似文献   

15.
The plasma membrane hexose transporter and the tonoplast hexose transporter from heterotrophically grown transformed Nicotiana tabacum cells have been studied in vitro using membrane vesicles for trans-zero transport studies. In highly purified phase-partitioned outside-out plasma membrane vesicles (PMV) the hexose transporter showed an apparent Km value of 230 microM (substrate: 3-O-methyl-D-glucose (3-OMG); pHi 7.2/pHo 7.2), which was reduced to 120 microM when a pH gradient was imposed (pHo 5.7/pHi 7.2). However, the Vmax value was not affected indicating that no stable pH gradient was formed. Uptake experiments with 14C-labelled acetate supported this interpretation. Transport was insensitive to N-ethylmaleimide (NEM; up to 1 mM concentration) and p-chloromercuribenzene sulfonate (PCMBS; up to 500 microM), whereas the tonoplast hexose transporter (in mixed inside / out and outside / out vesicles) was inhibited by NEM in a substrate-protectable manner, and PCMBS was also inhibitory. Kinetically two components with apparent Km values of 6 and 20 mM could be distinguished for the tonoplast hexose transporter. Substrate specificities of both transporters were similar except for D-galactose and D-fructose. The results indicate structural differences between the tonoplast and plasma membrane hexose transporters in plants.  相似文献   

16.
17.
18.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

19.
Inhibition of hexose transport by N-ethylmaleimide was studied with regard to alkylation of different types of sulfhydryl group on the hexose carrier of the human erythrocyte. Uptake of 3-O-methylglucose was progressively and irreversibly inhibited by N-ethylmaleimide, with a half-maximal effect at 10-13 mM. A sulfhydryl group known to exist on the exofacial carrier was not involved in transport inhibition by N-ethylmaleimide, since reversible protection of this group by the impermeant sulfhydryl reagent 5,5'-dithiobis(2-nitrobenzoic acid) had no effect on the ability of N-ethylmaleimide to inhibit transport, or on its ability to decrease the affinity of the exofacial carrier for maltose. Nevertheless, the exofacial sulfhydryl was quite reactive with N-ethylmaleimide, since it was possible using a differential labeling technique to specifically label this group in protein-depleted ghosts with a half-maximal effect at 0.3 mM N-[3H]ethylmaleimide, and to localize it to the Mr 19,000 tryptic carrier fragment. Transport inhibition by N-ethylmaleimide correlated best with labeling of a single cytochalasin B-sensitive internal sulfhydryl group on the glycosylated Mr 23,000-40,000 tryptic fragment of the carrier, which was half-maximally labeled at about 4 mM reagent. Whereas N-ethylmaleimide readily alkylates the exofacial carrier sulfhydryl, it inhibits transport by reacting with at least one internal carrier sulfhydryl located on the glycosylated tryptic carrier fragment.  相似文献   

20.
Suppression of antibody secretion by the 2,4,6-trinitrophenol (TNP)-binding BALB/c myeloma, MOPC 315, by idiotype- and hapten-reactive suppressor T cells is mediated by secreted factors (TsF) and requires the presence of accessory cells (AC). Idiotype-specific TsF functions only in the presence of Ia+ AC and is completely idiotype specific. Moreover, no suppression is observed when myeloma targets and AC are separated by cell-impermeable membranes, indicating that the role of AC may be to bind, focus, and/or present TsF to the myeloma cells. In contrast, TNP-specific TsF inhibits myeloma function in the presence of TNP-protein and activated macrophages that are not Ia+. This form of suppression is nonspecific at the effector stage; i.e., anti-TNP TsF inhibits a non-TNP binding cell line, TEPC 15, as long as TNP-protein and activated macrophages are present. Moreover, suppression occurs even when myeloma targets and AC are separated by cell-impermeable membranes. These results are consistent with the view that hapten-reactive TsF binds to antigen on the surface of macrophages and induces these cells to secrete nonspecific immunosuppressive molecules. Thus, different types of AC may play fundamentally different roles in TsF-mediated suppression; they may either bind and present TsF to targets (as in the case of idiotype-specific TsF) or secrete nonspecific immunosuppressants as a consequence of a TsF-antigen interaction (hapten-specific TsF). Autonomous, suppressible targets provide valuable experimental systems for analyzing the cellular interactions in T cell-mediated suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号