首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Bovine blastocysts were produced using 6 different systems: 5 commonly used in vitro culture systems (synthetic oviduct fluid medium - SOF- without fetal calf serum, SOF supplemented with 10% serum for the entire culture period, SOF supplemented with 10% serum from Day 4 of culture, M199 coculture with bovine oviduct epithelial cells, M199 coculture with granulosa cell monolayer) and 1 in vivo culture system involving collection of blastocysts from superovulated bovine donors at Day 7. Zygotes obtained from IVM/IVF were assigned randomly to 1 of the 5 systems tested and were cultured for 9 d (Day 0= day of insemination). Cleavage, development to the blastocyst stage and blastocyst sex ratio were assessed in all treatments. In addition, the effect of the IVC system on the kinetics of blastocyst development and sex ratio was assessed on Days 6, 7, 8, and 9. The presence of fetal calf serum in SOF not only resulted in faster development (19.1% of blastocysts in SOF supplemented with serum vs 7.1% in absence of serum at Day 6; P < 0.05) and increased blastocyst production (47.5% of blastocysts in SOF supplemented with serum vs 34.4% in absence of serum; P < 0.05) but it also enhanced overall male survival. The coculture systems produced fewer blastocysts than culture in SOF (27.6 to 28.3% in coculture vs 47.5% in SOF supplemented with serum; P < 0.05), but similar to SOF without fetal calf serum, they had no effect on blastocyst sex ratio.  相似文献   

3.
To improve rat embryo culture conditions, responses of Wistar 2-cell embryos from 2 breeders to oxygen tension (5 vs 20%) and bovine serum albumin (BSA) (0 vs 3 mg/ml) were examined using rat 1-cell embryo culture medium (mR1ECM). Supplementation of 3 mg/ml BSA significantly stimulated and accelerated development to the blastocyst and expanded blastocyst stages during 72 and 96 h culture, while reduced oxygen tension stimulated cell division. Fetus development after transfer of blastocysts obtained from 72 h culture under 5% O2 with BSA was significantly higher than those cultured under atmospheric oxygen without BSA. However, the nuclear numbers of in vitro cultured blastocysts and fetus development after embryo transfer were still significantly lower than in vivo developed blastocysts, indicating the current culture condition is still suboptimal.  相似文献   

4.
To elucidate the effect of nutrient substrates on embryo development, in vitro fertilized bovine one-cell embryos were cultured in a medium similar to synthetic oviduct fluid (SOF) but without glucose and containing 3.3 mM lactate, 0.3 mM pyruvate and 3 mg/ml bovine serum albumin (BSA) at 39 degrees C in 5% CO(2) in air. Results indicated that addition of glucose was not only unnecessary, but it also had a deleterious effect on embryo development to the morula stage. Lactate supported embryo development up to the morula stage as well as pyruvate. Supplementation with 20 amino acids contained in basal medium Eagle's (BME) and minimum essential medium (MEM) improved development to the morula stage dramatically and increased the cell number compared with that of the controls. Addition of the vitamins from MEM to SOF had no beneficial effect. The SOF with amino acids did not increase the frequency of blastocysts 7 days after in-vitro fertilization but did increase the total number of cells compared with that of the controls. Frequency of blastocysts at Day 7 in SOF with amino acids was equivalent to that of co-culture although the total cell number was lower. These results demonstrate that a semi-chemically defined medium can successfully support the development of bovine embryos to the morula stage to a limited extent, but the medium lacks some nutrients or growth factors to fully support development through the blastocyst stage.  相似文献   

5.
Employing a total of 3465 bovine oocytes this study was aimed at improving the efficiency of bovine embryo production under defined and undefined conditions. Following in vitro maturation (IVM) and in vitro fertilization (IVF), oocytes were allocated to various culture treatments using synthetic oviduct fluid (SOF). In our 3 experiments we showed that: 1) the addition of fetal calf serum (FCS 10% v/v) to SOF droplets after 20 to 24 h significantly improved blastocyst yields on Day 6 (21 vs 12%; P < 0.01), but not at later stages and resulted in significantly higher Day-8 blastocyst cell numbers (148 +/- 61 vs 92 +/- 35; P < 0.05); 2) the removal of bovine serum albumin (BSA) from the standard SOF medium resulted in significantly reduced blastocyst yields on Days 6, 7 and 8, respectively (17 vs 8%; 28 vs 18%; 31 vs 21%; P < 0.05); 3) the presence or absence of cumulus cells surrounding the presumptive zygote in culture in SOF had no effect on cleavage rate, percentage of 5-8 cell embryos or blastocyst yields (Day 6,7 or 8); 4) the culture of presumptive zygotes in SOF in an atmosphere of 5% CO2 in air (20% O2) resulted in significantly reduced development compared with culture in 5% CO2, 5% O2, 90% N2 in terms of blastocyst yield on Days 6, 7 and 8 and on Day 8 hatching rate, respectively (5 vs 22%; 9 vs 33%; 13 vs 48%; 50 vs 8%; P < 0.001) and 5) embryo density (1 embryo per 1 or 3 microl SOF) or replacing the culture medium every 48 h had no effect when SOF was supplemented with serum; however, under serum-free conditions, changing of the media resulted in a slightly improved Day-6 blastocyst yield such that renewal of serum-free medium mimicked the effect of serum addition.  相似文献   

6.
Oviductal factors may be obtained by ultrafiltration of conditioned medium, added to a simple media and used in bovine embryo culture. In this study, we aimed to analyze the development of bovine embryos produced with oviductal factors compared to those cultured in the presence of BSA or serum, the effects of glucose in presence of these protein supplements, and the ability of oviductal factors to support embryo development during the entire culture period. In vitro produced bovine zygotes from slaughterhouse ovaries were cultured in modified-synthetic oviduct fluid (mSOF) alone or supplemented with (1) oviductal factors, (2) BSA and (3) FCS. Oviductal factors showed embryotrophic activity, although with blastocyst rates lower than those in BSA and FCS. Glucose (1.5 mM) added at Day 2 of culture did not affect development in the presence of oviductal factors. The number of cells in expanded blastocysts was unaffected by the presence of glucose or any of the protein supplements used. Both BSA and FCS, respectively, improved blastocyst rates of Day 6 embryos produced with oviductal factors. The effect of oviductal factors was masked by the presence of BSA during the entire culture. FCS promoted an earlier appearance of blastocysts. It is concluded that the effect of glucose on in vitro embryo development depends upon the source of protein. Oviductal factors are not an appropriate supplement for embryos beyond Day 6 of culture in SOF, although blastocyst rates of such embryos may be increased by culturing them in the presence of FCS or BSA.  相似文献   

7.
8.
This study was designed to evaluate the effect of in vitro culture system on bovine blastocyst yield and quality after vitrification. In Experiment 1, IVM/IVF zygotes were allocated to three culture conditions: (I) Oviductal cells-SOF (OCM-SOF); (II) Oviductal cells-TCM (OCM-TCM); and (III) SOF for 8 days. There was no significant difference between blastocyst rates among groups.In Experiment 2, the IVP-blastocysts in three above culture conditions were vitrified within groups segregated according to age (Day 7 and 8) and blastocoelic cavity size (early and expanded blastocysts). A trend of higher survival rate was obtained in vitrified/warmed early blastocysts compared with expanded ones, so that the difference in OCM-TCM group was significant (P < 0.001). Higher survival and hatching rates (P < 0.001) were obtained in OCM-SOF and OCM-TCM groups (co-culture) compared with SOF group and the age of blastocyst had no effect on post-thaw survival and hatching rates. In Experiment 3, after staining of blastocysts, in fresh blastocysts the highest number of trophectoderm cells was observed in OCM-TCM group and the number of inner cell mass (ICM) was higher in co-culture groups than SOF group (P < 0.001). In vitrified/warmed blastocysts the number of ICM and trophectoderm cells in co-culture groups was higher than SOF group (P < 0.001) except for the ICM of expanded blastocysts. In conclusion, in our culture conditions, the blastocyst yield is not influenced by culture system, while the cryotolerance of IVP-blastocysts is positively influenced by the presence of somatic cells. Moreover, the expanded blastocysts are more susceptible to cryoinjury than early blastocysts.  相似文献   

9.
The aim of this study was to examine the effects of co-culture with Vero cells during the in vitro maturation (IVM) and three culture media, B2+5% fetal calf serum (FCS) on Vero cells, synthetic oviduct fluid (SOF)+5% FCS, and SOF+20 gL(-1) bovine serum albumin (BSA), on the developmental competence of the embryos and their ability to survive vitrification/warming. We also tested the effect of morphological quality and the age of the embryo on its sensitivity to vitrification. The IVM system neither affects the embryo development up to Day 7 nor survival rates after vitrification. The culture of embryos in SOF+FCS and in Vero cells+B2 allowed obtaining more Day 6 and Day 7 blastocysts, and a higher % of Day 7 blastocysts vitrified than culture in SOF+BSA. Contrarily, on Day 8, more blastocysts were vitrified in SOF+BSA than in SOF+FCS. Blastocysts quality affected development after vitrification/warming, and Day 7 embryos showed higher survival rates than their Day 8 counterparts. Day 7 blastocysts produced in Vero cells or in SOF+BSA survived at higher rates than those produced in SOF+FCS at 24 and 48 h after warming. Embryo culture with BSA allows obtaining hatching rates after vitrification/warming higher than those obtained after co-culture with Vero cells in B2 and FCS. Moreover, this system provides hatching rates from Day 8 blastocysts comparable to those obtained on Day 7 in Vero cells. Further studies, including embryo transfer to recipients, are needed to clarify factors affecting the freezability of in vitro produced bovine embryos.  相似文献   

10.
Two experiments were conducted to examine the effect of supplemental glucose (G; 1.5 mM) and/or acetate (A; 0.5 mM) on the development of early sheep embryos to blastocysts when cultured in vitro in glucose-free synthetic oviductal fluid (SOF) + sheep serum or bovine serum albumin (BSA). In Experiment 1, 2- to 4-cell, 8- to 16-cell and >16-cell embryos were cultured in SOF, SOF+G, SOF+A or SOF+G+A. All media were supplemented with 10% sheep serum. In addition, embryos were cultured in either microdrops under polysiloxane oil or in multiwell dishes. Overall, development to the blastocyst stage was 3%, 30% and 68% for 2- to 4-cell, 8- to 16-cell and >16-cell stages, respectively, suggesting that an 8-cell developmental block existed under our culture conditions. Glucose supplementation had little effect on embryo development, and no overall effect was observed from the addition of acetate. In Experiment 2, 8- to 16-cell embryos were cultured in SOF or SOF+G, both supplemented with BSA. Development to the blastocyst stage was 25% and 18%, respectively. The results show that the presence of glucose or acetate did little to enhance embryonic development in our incubation systems. Further work is required to evaluate fully the energy requirements for development of the early sheep embryo.  相似文献   

11.
Eckert J  Niemann H 《Theriogenology》1995,43(7):1211-1225
This study examined the role of protein supplementation at the various steps of the in vitro production of bovine embryos derived from two different morphological categories of COC. The basic medium was TCM 199 and was supplemented with hormones during maturation in vitro and either estrous cow serum (ECS), bovine serum albumin (BSA) at various concentrations or polyvinyl-alcohol (PVA). Fertilization in vitro was carried out using frozen-thawed semen or one bull in Fert-talp containing heparin, hypotaurin and epinephrine and either 6 mg/ml BSA or 1 mg/ml PVA. In vitro culture up to the blastocyst stage was performed in TCM 199 supplemented with either ECS, BSA or PVA. The first experiment investigated the influence of different medium-supplements (ECS, BSA or PVA) on nuclear maturation and revealed no significant differences among treatment groups nor between categories of COC (63.9% to 74.9% and 48.9% to 77.0%, respectively). The time course of in vitro fertilization was elucidated in Experiment 2 in medium supplemented with either protein or PVA during maturation and fertilization. Penetration was not affected (70.9% to 79.3% penetration 12 h after onset of oocyte-sperm-co-incubation), but formation of pronuclei was decreased (P < 0.05) 12 and 19 h after onset of oocyte-sperm-co-incubation and was retarded in medium supplemented with PVA (12 h: 63.8 vs 21.4 %; 19 h: 57.5 vs 20.8 %, respectively) while cleavage was not affected. In Experiment 3, six treatment groups were formed in which the two different morphological categories of cumulus-oocyte-complexes (COC) were incubated in basic medium supplemented with 1) ECS during maturation and embryo culture and BSA during fertilization; 2) PVA during maturation and embryo culture, fertilization medium with PVA; 3) PVA during maturation and embryo culture, fertilization medium with BSA; 4) BSA (1 mg/ml) during maturation, fertilization and embryo culture; 5) BSA (6 mg/ml) during maturation, fertilization and embryo culture; and 6) BSA (10 mg/ml) during maturation, fertilization and embryo culture. The rates of cleavage and the development to morulae or blastocysts did not differ (P > 0.05) among treatment groups and between both categories of COC and were showing a high degree of variability (cleavage 54.0% to 65.1% and 41.3% to 55.7%, respectively; morulae 25.3% to 53.0% and 26.0% to 51.2%, respectively; blastocysts 5.4% to 24.7% and 0.6% to 20.3%, respectively). Parthenogenetic activation only rarely occurred in medium containing PVA throughout all steps of in vitro production of bovine embryos (Experiment 4) and led to early cleavage stages (8%), but no development to morula- or blastocyst-stages was observed. It is concluded that 1) formation of pronuclei was retarded in medium lacking protein-supplementation, indicating that BSA is required for regular fertilization in vitro and 2) under our experimental conditions, protein-supplementation is not necessary for maturation and development up to the blastocyst stage in vitro.  相似文献   

12.
Development of in vitro-produced bovine embryos was studied in 3 two-step culture media: synthetic oviduct fluid (SOF), Gardner's G1/G2, and control (hamster embryo culture medium with 11 amino acids [HECM-6] followed by tissue culture medium 199 + 10% bovine calf serum). Modifications were made to reduce or eliminate protein. Glycolysis and Krebs cycle activity of morulae and blastocysts developed from selected immature oocytes were measured. There were no differences in development to the morula and blastocyst stages between SOF, G1/G2, or control (41%, 36%, and 46%, respectively), although more blastocysts developed in control medium than in G1/G2 (46%, 30%, respectively). Reducing or removing BSA during the initial culture period did not significantly reduce development to blastocyst (31%, 33%, respectively), although development was reduced in SOF with BSA removed from the final culture period (19%). There were no differences in development to the blastocyst stage between SOF, SOF with BSA removed during the initial culture period, and control (44%, 32%, 49%, respectively), but development was reduced in chemically defined protein-free medium throughout the culture period (21%). Krebs cycle activity did not differ between treatments; however, glycolysis was highest in the control embryos and lowest in embryos cultured in protein-free medium. Embryos that developed in the presence of serum appeared dark and granular and had elevated glycolytic rates compared to embryos developed in completely defined medium. This study shows that both metabolism and blastocyst development of embryos are altered by different culture media, implying a functional linkage between these two indicators of successful embryogenesis.  相似文献   

13.
14.
Orsi NM  Leese HJ 《Theriogenology》2004,61(2-3):561-572
Bovine serum albumin (BSA) is an embryotrophic macromolecule used in embryo culture media, which is commonly replaced with synthetic compounds, such as polyvinyl alcohol (PVA). This study compared the effect of BSA and PVA on the development, blastocyst cell number and amino acid metabolism of preimplantation bovine embryos in vitro. Embryos were produced by in vitro maturation and fertilization of immature oocytes from abattoir-derived ovaries. Zygotes were cultured in synthetic oviduct fluid with either 4 mg/ml BSA (SOFaaBSA) or 1 mg/ml PVA (SOFaaPVA) in microdrops with a mineral oil overlay at 39 degrees C under a 5% O2/5% CO2/90% N2 atmosphere. Blastocyst rate and cell numbers were determined after 123 h of culture. In parallel, single expanding blastocysts grown in either medium were incubated in microdrops for 12 h. Amino acid profile of spent drops was determined by high performance liquid chromatography. Replacing BSA with PVA depressed blastocyst rate and cell numbers, and led to quantitative and qualitative differences in amino acid appearance, disappearance and turnover. These differences could partly be due to an increase in free intracellular amino acid concentration in SOFaaBSA embryos derived from hydrolysis of endocytosed BSA, and argue against the inclusion of PVA in bovine embryo culture media.  相似文献   

15.
16.
We describe a bovine embryo culture system that supports repeatable high development in the presence of serum or BSA as well as under defined conditions in the absence of those components. In the first experiment, embryo development in SOF with amino acids (SOFaa), sodium citrate (SOFaac) and myo-inositol (SOFaaci) and with BSA or polyvinyl alcohol (PVA) was compared with that in a M199 granulosa cell co-culture (M199 co-culture). Subsequently, development and cell numbers of blastocysts cultured under defined conditions in SOFaaci with PVA (SOFaaci-PVA), or under undefined conditions in SOFaaci with 5% cow serum (SOFaaci-CS) or M199 co-culture were compared. The repeatability of culture results in SOFaaci-CS was checked by weekly replicates (n = 30) spread over 11 months. The viability of embryos developed in SOFaaci-PVA was estimated by transfer of morphologically good blastocysts (n = 10) to synchronized recipients. In the second experiment, the effect of omitting CS or BSA from IVM and IVM-IVF on subsequent embryo development in SOFaaci-PVA or in SOFaaci-CS was investigated. Blastocyst development in SOFaa-PVA, SOFaac-PVA, SOFaa-BSA and M199 was 16 +/- 3b, 23 +/- 2ab, 30 +/- 8a and 36 +/- 7a%, respectively (Pab < 0.05). Additional inclusion of myoinositol resulted in 42 +/- 1a% blastocysts in SOFaaci-PVA vs 19 +/- 3b% in SOFaac-PVA, 47 +/- 7a% in SOFaac-BSA, and 36 +/- 7a% in M199 co-culture, respectively (Pab < 0.01). In 30 replicates, the average cleavage and blastocyst rates of oocytes in SOFaaci-CS were 87 +/- 4 and 49 +/- 5%, respectively. Five normal calves were produced after transfer of 10 blastocysts developed in defined culture medium (i.e., SOFaaci-PVA). Defined IVM or IVM-IVF (i.e., in absence of CS and BSA) reduced cleavage rates (83 +/- 3 and 55 +/- 3% vs 90 +/- 1% in presence of CS; P < 0.01). Subsequent embryo development in SOFaaci-CS was not affected in either of these defined conditions. However, cleavage and blastocyst rates under completely defined IVP conditions were 54 +/- 7 and 19 +/- 4%, respectively. It was concluded that under defined culture conditions, addition of citrate and myo-inositol improved blastocyst development to rates comparable to those obtained with serum, BSA or co-culture and that the quality of blastocysts was not affected by the absence of serum or BSA. However, serum was essential during IVM/IVF for normal fertilization and subsequent high blastocyst development.  相似文献   

17.
Proteins secreted by mouse blastocysts developing in vitro were compared to these from blastocysts developing in utero to determine if a simple medium supporting blastocyst development also supports secreted protein expression. In-vivo embryos were collected on days 3, 4, or 5 of pregnancy and incubated in 35S-methionine to produce conditioned medium containing released, labeled proteins. Embryos for culture were collected on day 3 and after 48 or 72 h labeled conditioned medium was produced. Labeled proteins were separated by two-dimensional electrophoresis and compared using a digital image analysis system. Day 3 embryos did not release proteins in detectable amounts, although synthesis of intracellular proteins was substantial. Day-4 and -5 blastocysts released proteins in increasing amount and complexity, consistent with previous results. When day-3 embryos were cultured in medium containing 4 mg/ml BSA for 48 h, secreted protein patterns were similar but not identical to those of day-5 uterine blastocysts. Although most of the proteins produced by uterine blastocysts were secreted by cultured embryos, differences were found in the relative quantities of certain proteins. Neither crystallized BSA nor polyvinyl alcohol at 4 mg/ml supported development of protein secretion as well as the crude fraction-V BSA. Blastocysts restricted to the oviduct also exhibited quantitative differences in protein secretion patterns compared to uterine blastocysts. Thus, although blastocyst development and the expression of many secreted proteins are supported outside the uterus, the full pattern of secretion characteristic of the peri-implantation embryo may be dependent on specific uterine influences.  相似文献   

18.
血清及BSA对牛体外受精胚胎发育过程超微结构影响的研究   总被引:1,自引:0,他引:1  
本研究将牛IVF胚胎分别在SOF FCS、SOF BSA和SOF PVA三种培养系统内进行培养,然后分别取三个系统中发育到原核期、2细胞、4细胞、8细胞、桑椹胚和囊胚阶段的胚胎进行透射电镜的观察,了解培养系统中血清和BSA的添加与否对胚胎发育过程中细胞内脂滴、细胞连接、细胞凋亡和微绒毛发育的影响。观察结果表明:各培养系统胚胎的细胞质中均存在大量的脂滴,表明外培养系统是造成脂滴积累的主要原因;血清的添加不会进一步促进脂滴的大量积累,反而可以避免多个脂滴聚合成更大的脂滴。三种培养系统条件下胚胎细胞连接无显著差异。培养系统中添加FCS或BSA时,桑椹胚期以后的胚胎细胞中存在凋亡小体,表明血清成分是引起细胞凋亡的重要原因。培养系统中血清成分的缺乏会影响胚胎表面微绒毛的发育。  相似文献   

19.
The present study investigated the effect of estrous cow serum (ECS) during culture of bovine embryos on blastocyst development and survival after cryopreservation by slow freezing or vitrification. Embryos were derived from in vitro maturation (IVM) and in vitro fertilization (IVF) of abbatoir-derived oocytes. At Day 3, embryos were cultured in three different media: Charles Ronsenkrans medium + amino acids (CR1aa; without bovine serum albumin (BSA)) + 5% estrous cow serum (CR1-ECS), CR1aa + 3 mg/mL BSA (CR1-BSA) or CR1aa + 5% ECS + 3 mg/mL BSA (CR1-ECS-BSA). At 7.5 d post-insemination (PI), blastocyst yield and quality were evaluated; blastocysts and expanded blastocysts from each media were cryopreserved by Open Pulled Straw (OPS) vitrification method or slow freezing (1.5 M ethylene glycol, EM). Total blastocyst yield did not differ among CR1-ECS, CR1-BSA and CR1-ECS-BSA (30.9, 33.1 and 32.9%, respectively, P < 0.05). Embryo survival (hatching rate) was higher in vitrified versus slow-frozen embryos (43% versus 12%, respectively, P < 0.01), and in embryos cultured in CR1-BSA (40.3%) compared with those cultured in serum-containing media (CR1-ECS, 21.5% and CR1-ECS-BSA, 19.8%; P < 0.01). In conclusion: (a) it was possible to produce in vitro bovine embryos in serum-free culture medium without affecting blastocyst yield and quality; (b) serum-free medium produced the best quality embryos (in terms of post-cryopreservation survival); and (c) vitrification yielded the highest post-cryopreservation survival rates, regardless of the presence of serum in the culture medium.  相似文献   

20.
Epidermal growth factor (EGF) has been shown to enhance the in vitro rate of blastocyst formation in several species. Follicular development was induced in ewes (n=15) by twice daily administration of FSH-P on Days 13 and 14 of the estrous cycle. Cumulus oocyte complexes (COCs) were collected from all visible follicles (n=25+/-2.4/ewe) on Day 15. COCs from each ewe were cultured separately for 24h in maturation medium (containing 10% serum, LH, FSH and estradiol) with (8.2+/-0.9 per ewe) or without (7.8+/-0.8 per ewe) EGF (10 ng/ml). Oocytes were then denuded by hyaluronidase treatment, and healthy oocytes were cultured in the presence of frozen-thawed semen in synthetic oviductal fluid (SOF) medium containing 2% sheep serum. After 18-20 h, zygotes were transferred to SOF medium without glucose and cultured for about 36 h until they reached the 4-8 cell stage. Embryos were transferred to SOF medium with glucose for further development. Medium was changed every other day until blastocyst formation on Day 8 of culture (Day 1=day of fertilization). The rate of embryonic development was evaluated throughout the culture period. After maturation, cumulus cells were more expanded in the presence than in the absence of EGF. The rates of fertilization (overall 75.7+/-3.9%) and morula formation (overall 40.6+/-7.1%) were similar (P>0.05) for COCs cultured with or without EGF. However, EGF increased (P<0.01) the number of blastocysts (1.4+/-0.1 versus 0.6+/-0.2 per ewe) and tended to increase (P<0.1) the rate of blastocyst formation (21.0+/-6.6% versus 13.4+/-4.3% per ewe). These data demonstrate that EGF increases blastocyst formation in FSH-treated ewes. Therefore, EGF is recommended as a supplement to maturation medium to enhance embryonic development in vitro in FSH-treated sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号