首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal rearrangements can contribute to the evolution of postzygotic reproductive isolation directly, by disrupting meiosis in F1 hybrids, or indirectly, by suppressing recombination among genic incompatibilities. Because direct effects of rearrangements on fertility imply fitness costs during their spread, understanding the mechanism of F1 hybrid sterility is integral to reconstructing the role(s) of rearrangements in speciation. In hybrids between monkeyflowers Mimulus cardinalis and Mimulus lewisii, rearrangements contain all quantitative trait loci (QTLs) for both premating barriers and pollen sterility, suggesting that they may have facilitated speciation in this model system. We used artificial chromosome doubling and comparative mapping to test whether heterozygous rearrangements directly cause underdominant male sterility in M. lewisii–M. cardinalis hybrids. Consistent with a direct chromosomal basis for hybrid sterility, synthetic tetraploid F1s showed highly restored fertility (83.4% pollen fertility) relative to diploids F1s (36.0%). Additional mapping with Mimulus parishii–M. cardinalis and M. parishiiM. lewisii hybrids demonstrated that underdominant male sterility is caused by one M. lewisii specific and one M. cardinalis specific reciprocal translocation, but that inversions had no direct effects on fertility. We discuss the importance of translocations as causes of reproductive isolation, and consider models for how underdominant rearrangements spread and fix despite intrinsic fitness costs.  相似文献   

2.
In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent‐of‐origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent‐of‐origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto‐nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation.  相似文献   

3.
The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus. We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F1 and F2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale.  相似文献   

4.
The Dobzhansky–Muller model of speciation posits that defects in hybrids between species are the result of negative epistatic interactions between alleles that arose in independent genetic backgrounds. Tests of one important prediction from this model, that incompatibilities “snowball,” have relied on comparisons of the number of incompatibilities between closely related pairs of species separated by different divergence times. How incompatibilities accumulate along phylogenies, however, remains poorly understood. We extend the Dobzhansky–Muller model to multispecies clades to describe the mathematical relationship between tree topology and the number of shared incompatibilities among related pairs of species. We use these results to develop a statistical test that distinguishes between the snowball and alternative incompatibility accumulation models, including nonepistatic and multilocus incompatibility models, in a phylogenetic context. We further demonstrate that patterns of incompatibility sharing across species pairs can be used to estimate the relative frequencies of different types of incompatibilities, including derived–derived versus derived–ancestral incompatibilities. Our results and statistical methods should motivate comparative genetic mapping of hybrid incompatibilities to evaluate competing models of speciation.  相似文献   

5.
The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F(1) pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F(1) sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F(1) pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids.  相似文献   

6.
We examined the level of postzygotic reproductive isolation in F(1) and F(2) hybrids of reciprocal crosses between the Arabidopsis lyrata subspecies lyrata (North American) and petraea (European). Our main results are: first, the percentage of fertile pollen was significantly reduced in the F(1) and F(2) compared to the parental populations. Second, mean pollen fertility differed markedly between reciprocal crosses: 84% in the F(2) with ssp. lyrata cytoplasm and 61% in the F(2) with ssp. petraea cytoplasm. Third, 17% of the F(2) with ssp. petraea cytoplasm showed male sterility (produced less than 30 pollen grains in our subsample). The hybrids were female fertile. We used QTL mapping to find the genomic regions that determine pollen fertility and that restore cytoplasmic male sterility (CMS). In the F(2) with ssp. lyrata cytoplasm, an epistatic pair of QTLs was detected. In the reciprocal F(2) progeny, four QTLs demonstrated within-population polymorphism for hybrid male sterility. In addition, in the F(2) with ssp. petraea cytoplasm, there was a strong male fertility restorer locus on chromosome 2 where a cluster of CMS restorer gene-related PPR genes have been found in A. lyrata. Our results underline the importance of cytonuclear interactions in understanding genetics of the early stages of speciation.  相似文献   

7.
8.
The emergence of barriers to reproduction between two populations is one of the most important features of speciation. Among the mechanisms of reproductive isolation are incompatible interactions between gene products of the parental species that reduce the fitness of hybrid individuals. The accumulation of such incompatibilities is described by the Bateson–Dobzhansky–Muller model (BDM) 1 that provides a framework for understanding how genes can coevolve to stay compatible within populations and become incompatible between populations. Only a handful of such loci have been identified and characterized at the molecular level. In this issue of EMBO Reports, Jhuang and colleagues 2 show that BDM incompatibilities have accumulated between a nuclear‐encoded gene and a mitochondrial ribosomal RNA between two yeast species.  相似文献   

9.
Substantial genetic variation exists in natural populations of Drosophila melanogaster. This segregating variation includes alleles at different loci that interact to cause lethality or sterility (synthetic incompatibilities). Fitness epistasis in natural populations has important implications for speciation and the rate of adaptive evolution. To assess the prevalence of epistatic fitness interactions, we placed naturally occurring X chromosomes into genetic backgrounds derived from different geographic locations. Considerable amounts of synthetic incompatibilities were observed between X chromosomes and autosomes: greater than 44% of all combinations were either lethal or sterile. Sex‐specific lethality and sterility were also tested to determine whether Haldane's rule holds for within‐species variation. Surprisingly, we observed an excess of female sterility in genotypes that were homozygous, but not heterozygous, for the X chromosome. The recessive nature of these incompatibilities is similar to that predicted for incompatibilities underlying Haldane's rule. Our study also found higher levels of sterility and lethality for genomes that contain chromosomes from different geographical regions. These findings are consistent with the view that genomes are coadapted gene complexes and that geography affects the likelihood of epistatic fitness interactions.  相似文献   

10.
White MA  Steffy B  Wiltshire T  Payseur BA 《Genetics》2011,189(1):289-304
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.  相似文献   

11.
We performed genetic analysis of hybrid sterility and of one morphological difference (sex-comb tooth number) on D. yakuba and D. santomea, the former species widespread in Africa and the latter endemic to the oceanic island of S?o Tomé, on which there is a hybrid zone. The sterility of hybrid males is due to at least three genes on the X chromosome and at least one on the Y, with the cytoplasm and large sections of the autosomes having no effect. F1 hybrid females carrying two X chromosomes from either species are perfectly fertile despite their genetic similarity to completely sterile F1 hybrid males. This implies that the appearance of Haldane's rule in this cross is at least partially due to the faster accumulation of genes causing male than female sterility. The larger effects of the X and Y chromosomes than of the autosomes, however, also suggest that the genes causing male sterility are recessive in hybrids. Some female sterility is also seen in interspecific crosses, but this does not occur between all strains. This is seen in pure-species females inseminated by heterospecific males (probably reflecting incompatibility between the sperm of one species and the female reproductive tract of the other) as well as in inseminated F1 and backcross females, probably reflecting genetically based incompatibilities in hybrids that affect the reproductive system. The latter 'innate' sterility appears to involve deleterious interactions between D. santomea chromosomes and D. yakuba cytoplasm. The difference in male sex-comb tooth number appears to involve fairly large effects of the X chromosome. We discuss the striking evolutionary parallels in the genetic basis of sterility, in the nature of sexual isolation, and in morphological differences between the D. santomea/D. yakuba divergence and two other speciation events in the D. melanogaster subgroup involving island colonization.  相似文献   

12.
Programmed cell death and hybrid incompatibility   总被引:7,自引:0,他引:7  
We propose a new theory to explain developmental aberrations in plant hybrids. In our theory, hybrid incompatibilities arise from imbalances in the mechanisms that cause male sterility in hermaphroditic plants. Mitochondria often cause male sterility by killing the tapetal tissue that nurtures pollen mother cells. Recent evidence suggests that mitochondria destroy the tapetum by triggering standard pathways of programmed cell death. Some nuclear genotypes repress mitochondrial male sterility and restore pollen fertility. Normal regulation of tapetal development therefore arises from a delicate balance between the disruptive effects of mitochondria and the defensive countermeasures of the nuclear genes. In hybrids, incompatibilities between male-sterile mitochondria and nuclear restorers may frequently upset the regulatory control of programmed cell death, causing tapetal abnormalities and male sterility. We propose that hybrid misregulation of programmed cell death may also spill over into other tissues, explaining various developmental aberrations observed in hybrids.  相似文献   

13.
胞质雄性不育多样性是解决三系杂交稻品质、抗性和产量的主要措施。在以密阳46为母本的杂交后代中发现不育材料H236A,通过杂交和自交,确定其不育类型和不育度;通过碘染和徕卡荧光显微镜DM2500对成熟花粉粒观察,确定花粉粒育性、败育形态和时期。结果表明:H236A是胞质雄性不育,不育度达99.8%以上;花粉粒属典败型的达83.17%,圆败型占16.83%,没有染败型花粉粒,为单核期败育。花粉粒败育形态多种多样,有不规则形,梭形,圆形等。清晰观察到晚期小孢子细胞质定向移动形成细胞质桥现象。本文还讨论了成熟花粉粒败育时期和败育形态的划分。  相似文献   

14.
As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci—hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)—to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species.  相似文献   

15.
F(1) hybrid sterility and ``hybrid breakdown' of F(2) and later generations in rice (Oryza sativa L.) are common and genetically complicated. We used a restriction fragment length polymorphism linkage map and F(4) progeny testing to investigate hybrid sterility and hybrid breakdown in a cross between ``widely compatible' O. sativa ssp. japonica cultivar Lemont from the Southern U.S. and ssp. indica cultivar Teqing from China. Our results implicate different genetic mechanisms in hybrid sterility and hybrid breakdown, respectively. Hybrid sterility appeared to be due to recombination within a number of putative differentiated ``supergenes' in the rice genome, which may reflect cryptic structural rearrangements. The cytoplasmic genome had a large effect on fertility of both male and female gametes in the F(1) hybrids. There appeared to be a pair of complementary genes that behaved like ``wide compatibility' genes. This pair of genes and the ``gamete eliminator' (S(1)) or ``egg killer' (S-5) may influence the phenotypic effects of presumed supergenes in hybrids. Hybrid breakdown appeared to be largely due to incompatibilities between indica and japonica alleles at many unlinked epistatic loci in the genome. These proposed mechanisms may partly account for the complicated nature of postreproductive barriers in rice.  相似文献   

16.
The Dobzhansky–Muller (D–M) model of reproductive isolation (RI) posits that hybrid sterility and inviability result from negative epistatic interactions between alleles at a minimum of two genes. This standard model makes several implicit assumptions, including a lack of environmental effects and genotype‐by‐environment interactions (GEI) involving hybrid sterility and hybrid inviability loci. Here we relax this assumption of the standard D–M model. By doing so, several patterns of the genetic architecture of RI change. First, a novel single‐locus model of postzygotic RI emerges. Several indirect lines of evidence are discussed in support of the model, but we conclude that this new single‐locus model is currently no more supported than previous ones. Second, when multilocus D–M models incorporating GEI are considered, we find that the number of potential negative epistatic interactions increases dramatically over the number predicted by the standard D–M model, even when only the most simple case of two‐allele interactions are considered. Third, these multilocus models suggest that some previous generalizations about the evolutionary genetics of postzygotic RI may not necessarily hold. Our findings also suggest that the evolution of postzygotic RI may be more likely when the expression of traits driving speciation is affected by the environment, since there appears to be a greater spectrum of potential hybrid incompatibilities under the D–M model incorporating GEI.  相似文献   

17.
Anther development and male fertility are essential biological processes for flowering plants and are important for crop seed production. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Rice (Oryza sativa L.) male sterility phenotypes, including genic male sterility, hybrid male sterility, and cytoplasmic male sterility, are generally caused by mutations of fertility‐related genes, by incompatible interactions between divergent allelic or non‐allelic genes, or by genetic incompatibilities between cytoplasmic and nuclear genomes. Here, we review the recent advances in the molecular basis of anther development and male fertility‐sterility conversion in specific genetic backgrounds, and the interactions with certain environmental factors. The highlighted findings in this review have significant implications in both basic studies and rice genetic improvement. [ Yao‐Guang Liu (Corresponding author)]  相似文献   

18.
Cytoplasmicmalesterility(CMS)inhighplantsisamaternallyinheritedtraitthatsuppressesviablepollenproductionandisextremelyvaluablefortheproductionofhybridseeds.ApplicationofCMSricetodevelopmentofhybridricevarietieshasalreadybeenavailableinChinasince1976.Inre…  相似文献   

19.
20.
The evolution of intrinsic postzygotic isolation can be explained by the accumulation of Dobzhansky‐Muller incompatibilities (DMI). Asymmetries in the levels of hybrid inviability and hybrid sterility are commonly observed between reciprocal crosses, a pattern that can result from the involvement of uniparentally inherited factors. The mitochondrial genome is one such factor that appears to participate in DMI in some crosses but the frequency of its involvement versus biparentally inherited factors is unclear. Here we assess the relative importance of incompatibilities between nuclear factors (nuclear‐nuclear) versus those between mitochondrial and nuclear factors (mito‐nuclear) in a species that lacks sex chromosomes. We used a Pool‐seq approach to survey three crosses among genetically divergent populations of the copepod, Tigriopus californicus, for regions of the genome that are affected by hybrid inviability. Results from reciprocal crosses suggest that mito‐nuclear incompatibilities are more common than nuclear‐nuclear incompatibilities overall. These results suggest that in the presence of very high levels of nucleotide divergence between mtDNA haplotypes, mito‐nuclear incompatibilities can be important for the evolution of intrinsic postzygotic isolation. This is particularly interesting considering this species lacks sex chromosomes, which have been shown to harbor a particularly high number of nuclear‐nuclear DMI in several other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号