首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF)-stimulated nitric oxide (NO) release from endothelial cells is mediated through the activation of VEGF receptor-2 (VEGFR-2). Herein, we have attempted to determine which autophosphorylated tyrosine residue on the VEGFR-2 is essential for VEGF-mediated endothelial nitric-oxide synthase (eNOS) activation and NO production from endothelial cells. Tyrosine residues 801, 1175, and 1214 of the VEGFR-2 were mutated to phenylalanine, and the mutated receptors were analyzed for their ability to stimulate NO production. We show, both in COS-7 cells cotransfected with the VEGFR-2 mutants and eNOS and in bovine aortic endothelial cells, that the Y801F-VEGFR-2 mutant is unable to stimulate NO synthesis and eNOS activation in contrast to the wild type, Y1175F-VEGFR-2, and Y1214F-VEGFR-2. However, the Y801F mutant retains the capacity to activate phospholipase C-gamma in contrast to the Y1175F-VEGFR-2. Interestingly, the Y801F-VEGFR-2, in contrast to the wild type receptor, does not fully activate phosphatidylinositol 3-kinase or recruit the p85 subunit upon receptor activation. This results in a complete incapacity of the Y801F-VEGFR-2 to stimulate Akt activation and eNOS phosphorylation on serine 1179 in endothelial cells. In addition, constitutive activation of Akt or a phosphomimetic mutant of eNOS (S1179D) fully rescues the inability of the Y801F-VEGFR-2 to induce NO release. Finally, we generated an antibody that specifically recognizes the phosphorylated form of tyrosine 801 of the VEGFR-2 and demonstrate that this residue is actively phosphorylated in response to VEGF stimulation of endothelial cells. We thus conclude that autophosphorylation of tyrosine residue 801 of the VEGFR-2 is essential for VEGF-stimulated NO production from endothelial cells, and this is primarily accomplished via the activation of phosphatidylinositol 3-kinase and Akt signaling to eNOS.  相似文献   

2.
The stimulation of vascular endothelial growth factor receptor-2 (VEGFR-2) by tumor-derived VEGF represents a key event in the initiation of angiogenesis. In this work, we report that VEGFR-2 is localized in endothelial caveolae, associated with caveolin-1, and that this complex is rapidly dissociated upon stimulation with VEGF. The kinetics of caveolin-1 dissociation correlated with those of VEGF-dependent VEGFR-2 tyrosine phosphorylation, suggesting that caveolin-1 acts as a negative regulator of VEGF R-2 activity. Interestingly, we observed that in an overexpression system in which VEGFR-2 is constitutively active, caveolin-1 overexpression inhibits VEGFR-2 activity but allows VEGFR-2 to undergo VEGF-dependent activation, suggesting that caveolin-1 can confer ligand dependency to a receptor system. Removal of caveolin and VEGFR-2 from caveolae by cholesterol depletion resulted in an increase in both basal and VEGF-induced phosphorylation of VEGFR-2, but led to the inhibition of VEGF-induced ERK activation and endothelial cell migration, suggesting that localization of VEGFR-2 to these domains is crucial for VEGF-mediated signaling. Dissociation of the VEGFR-2/caveolin-1 complex by VEGF or cyclodextrin led to a PP2-sensitive phosphorylation of caveolin-1 on tyrosine 14, suggesting the participation of Src family kinases in this process. Overall, these results suggest that caveolin-1 plays multiple roles in the VEGF-induced signaling cascade.  相似文献   

3.
VEGFR-2 is the major receptor that regulates the different functions of VEGF in adults. We have previously reported that following VEGF treatment of endothelial cells, VEGFR-2 is phosphorylated on Tyr1214 upstream of the Cdc42-SAPK2/p38-MAPKAP K2 pathway. However, little is known of the earliest molecular events that compose the SAPK2/p38 pathway following VEGFR-2 activation. In this study, we address this question using HA-tagged constructs of either wild-type VEGFR-2 or Y1214F VEGFR-2 mutant in immunoprecipitation assays. We show that the Src family kinase member Fyn, but not c-Src itself, is recruited to VEGFR-2 and is activated in a p-Tyr1214-dependent manner. We also report that the SH2 domain-containing adapter molecule Nck, but not Grb2, is recruited to VEGFR-2 in a p-Tyr1214-dependent manner and that it associates with Fyn. Moreover, PAK-2 is phosphorylated in a Fyn-dependent manner. Using chemical and genetic inhibitors, we show that Fyn activity is required for SAPK2/p38 but not for FAK activation in response to VEGF. In contrast, c-Src permits activation of FAK, but not that of SAPK2/p38. In addition, Fyn is required for stress fiber formation and endothelial cell migration. We propose a model in which Fyn forms a molecular complex with Nck and PAK-2 and suggest that this complex assembles in a p-Tyr1214-dependent manner within VEGFR-2 following VEGF treatment. In turn, this triggers the activation of the SAPK2/p38 MAP kinase module, and promotes stress fiber formation and endothelial cell migration.  相似文献   

4.
Vascular endothelial growth factor receptor-2 (VEGFR-2) activation by VEGF-A is essential in vasculogenesis and angiogenesis. We have generated a pan-phosphorylation site map of VEGFR-2 and identified one major tyrosine phosphorylation site in the kinase insert (Y951), in addition to two major sites in the C-terminal tail (Y1175 and Y1214). In developing vessels, phosphorylation of Y1175 and Y1214 was detected in all VEGFR-2-expressing endothelial cells, whereas phosphorylation of Y951 was identified in a subset of vessels. Phosphorylated Y951 bound the T-cell-specific adapter (TSAd), which was expressed in tumor vessels. Mutation of Y951 to F and introduction of phosphorylated Y951 peptide or TSAd siRNA into endothelial cells blocked VEGF-A-induced actin stress fibers and migration, but not mitogenesis. Tumor vascularization and growth was reduced in TSAd-deficient mice, indicating a critical role of Y951-TSAd signaling in pathological angiogenesis.  相似文献   

5.
Vascular endothelial growth factor (VEGF) inflammatory effects require acute platelet-activating factor (PAF) synthesis by endothelial cells (EC). We previously reported that VEGF-mediated PAF synthesis involves the activation of VEGF receptor-2/Neuropilin-1 complex, which is leading to the activation of p38 and p42/44 mitogen-activated protein kinases (MAPKs) and group V secretory phospholipase A(2) (sPLA(2)-V). As the mechanisms regulating sPLA(2)-V remain unknown, we addressed the role of the mitogen- and stress-activated protein kinase-1 (MSK1), which can be rapidly and transiently activated by p38 or p42/44 MAPKs. In native bovine aortic endothelial cells (BAEC), we observed a constitutive protein interaction of MSK1 with p38, p42/44 MAPKs, and sPLA(2)-V. These protein interactions were maintained in BAEC transfected either with the empty vector pCDNA3.1, wild-type MSK1 (MSK1-WT) or N-terminal dead kinase MSK1 mutant (MSK1-D195A). However, in BAEC expressing C-terminal dead kinase MSK1 mutant (MSK1-D565A), the interaction between MSK1 and sPLA(2)-V was reduced by 82% and 90% under basal and VEGF-treated conditions as compared to native BAEC. Treatment with VEGF for 15 min increased basal PAF synthesis in native BAEC, pCDNA3.1, MSK1-WT, and MSK1-D195A by 166%, 139%, 125%, and 82%, respectively. In contrast, PAF synthesis was prevented in cells expressing MSK1-D565A mutant. These results demonstrate the essential role of the C-terminal domain of MSK1 for its constitutive interaction with sPLA(2)-V, which appears essential to support VEGF-mediated PAF synthesis.  相似文献   

6.
Growing endothelial cells at the sites of angiogenesis express high numbers of VEGF receptors and therefore may be particularly sensitive to VEGF-mediated drug delivery. To test this hypothesis we have constructed a protein containing the catalytic A-subunit of Shiga-like toxin I fused to VEGF121 (SLT-VEGF/L). Wild-type A-subunit is a site-specific N-glycosidase of 28S rRNA that inhibits protein synthesis after being delivered into cells by separate cell-binding B-subunits. SLT-VEGF/L retains functional activities of both SLT and VEGF121 moieties, since it inhibits protein synthesis in a cell-free translation system and induces VEGFR-2 tyrosine autophosphorylation. SLT-VEGF/L selectively inhibits growth of porcine endothelial cells expressing 2.5 x 10(5) VEGFR-2/cell with an IC50 of 0.2 nM and rapidly induces apoptosis at concentrations >1 nM. We found that sensitivity of VEGFR-2 transfected PAE cells to SLT-VEGF/L declined as the cellular VEGFR-2 density decreased; PAE cells expressing 25000 VEGFR-2/cell were as sensitive as parental cells lacking the receptor. Growth inhibition and induction of apoptosis by SLT-VEGF/L require intrinsic N-glycosidase activity of the SLT moiety, but take place without significant inhibition of protein synthesis. Selective cytotoxicity of SLT-VEGF/L against growing endothelial cells overexpressing VEGFR-2 suggests that it may be useful in targeting similar cells at the sites of angiogenesis.  相似文献   

7.
Binding of vascular endothelial growth factor (VEGF) to its receptor, VEGFR-2 (Flk-1/KDR), induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for signaling proteins that relay the signals for cell proliferation, migration, and permeability enhancement. We explored the VEGF/receptor signaling pathway by performing a two-hybrid screen of a rat lung cDNA library in yeast using the intracellular domain of rat VEGFR-2 as bait. Two clones encoding lipocortin V were isolated. Subsequent studies with the yeast two-hybrid assay showed that the complete intracellular domain of VEGFR-2 was required for the interaction. Co-immunoprecipitation of translated proteins confirmed the interaction between the VEGF receptor and lipocortin V. VEGF induced a rapid tyrosine phosphorylation of lipocortin V in human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with antisense oligodeoxyribonucleotide (ODN) for lipocortin V significantly inhibited VEGF-induced cell proliferation, which was accompanied by a decrease in protein synthesis and tyrosine phosphorylation of lipocortin V. Our results indicate that lipocortin V may function as a signaling protein for VEGFR-2 by directly interacting with the intracellular domain of the receptor and appears to be involved in regulation of vascular endothelial cell proliferation mediated by VEGFR-2.  相似文献   

8.
Vascular endothelial growth factor (VEGF) and platelet-derived lipid sphingosine-1-phosphate (S1P) are two proinflammatory mediators which contribute to angiogenesis, in part through the synthesis of platelet-activating factor (PAF). The red grape skin polyphenolic extract (SGE) both prevents and inhibits angiogenesis in the Matrigel model, decreases the basal motility of endothelial and cancer cells, and reverses the chemotactic effect of S1P and VEGF on bovine aortic endothelial cells (BAECs) as well as the chemotactic effect of conditioned medium on human HT-1080 fibrosarcoma, human U-87 glioblastoma, and human DAOY medulloblastoma cells. Inhibition of VEGF- and S1P-mediated chemotaxis by SGE is associated with a down-regulation of ERK and p38/MAPK phosphorylation and a decreased in acute PAF synthesis. Notably, as do extracellular inhibitors of PAF receptor, SGE prevents S1P-induced PAF synthesis and the resulting activation of the S1P/endothelial differentiation gene-1 cascade. Given the key role of VEGF and S1P in inflammation, angiogenesis, and tumor invasion, SGE may therefore contribute to prevent (or to delay) the development of diseases associated with angiogenesis dysregulation, including cancer. The dual inhibition of S1P- and VEGF-mediated migration of endothelial cell and of serum-stimulated migration of U-87 cells suggests a usefulness of SGE against highly invasive human glioblastoma.  相似文献   

9.
Kou R  SenBanerjee S  Jain MK  Michel T 《Biochemistry》2005,44(45):15064-15073
Vascular endothelial growth factor (VEGF) plays a central role in vascular homeostasis. VEGF receptors (VEGFRs) include several subtypes that may have a differential role in endothelial signal transduction, but interactions among these receptors are incompletely understood. In these studies, we designed small interfering RNA (siRNA) duplexes that targeted specific VEGFR subtypes in bovine aortic endothelial cells (BAEC). siRNA-mediated downregulation of VEGFR-2 by its cognate siRNA resulted in a significant attenuation of VEGF-mediated signaling. Compared to control siRNA-treated cells, VEGFR-2 siRNA markedly inhibited VEGF-mediated activation of PI3K/Akt/GSK3-beta as well as MAP kinase and PKC pathways. VEGFR-2 siRNA also blocked VEGF-stimulated phosphorylation and dephosphorylation of endothelial nitric oxide synthase (eNOS) at Ser(1179) and Ser(116), respectively. VEGFR-2-specific siRNA had no effect on the abundance of VEGFR-1 protein. By contrast, VEGFR-1-specific siRNA markedly not only downregulated the abundance of VEGFR-1 but also significantly reduced VEGFR-2 protein and mRNA abundance. VEGFR-1 siRNA had no effect on the stability of VEGFR-2 protein or mRNA. However, VEGFR-1 siRNA significantly inhibited VEGFR-2 promoter activity, as determined in luciferase assays using VEGFR-2 promoter fusion constructs in transfected BAEC. Deletion of either the 5' E box or the 3' E box and the GATA element in the VEGFR-2 promoter completely abolished the inhibition of VEGFR-2 promoter activity elicited by VEGFR-1 siRNA. Taken together, our data suggest that VEGFR-1 receptor is a critical determinant of VEGFR-2 abundance, while VEGFR-2 is the key receptor directly responsible for endothelial cell signaling stimulated by VEGF.  相似文献   

10.
We previously reported that vascular endothelial growth factor (VEGF)-A(165) inflammatory effect is mediated by acute platelet-activating factor synthesis from endothelial cells upon the activation of VEGF receptor-2 (VEGFR-2) and its coreceptor, neuropilin-1 (NRP-1). In addition, VEGF-A(165) promotes the release of other endothelial mediators including nitric oxide and prostacyclin (PGI(2)). However, it is unknown whether VEGF-A(165) is mediating PGI(2) synthesis through VEGF receptor-1 (VEGFR-1) and/or VEGF receptor-2 (VEGFR-2) activation and whether the coreceptor NRP-1 potentiates VEGF-A(165) activity. In this study, PGI(2) synthesis in bovine aortic endothelial cells (BAEC) was assessed by quantifying its stable metabolite (6-keto prostaglandin F(1alpha), 6-keto PGF(1alpha)) by enzyme-linked immunosorbent assay. Treatment of BAEC with VEGF analogs, VEGF-A(165) (VEGFR-1, VEGFR-2 and NRP-1 agonist) and VEGF-A(121) (VEGFR-1 and VEGFR-2 agonist) (up to 10(-9) m), increased PGI(2) synthesis by 70- and 40-fold within 15 min. Treatment with VEGFR-1 (placental growth factor and VEGF-B) or VEGFR-2 (VEGF-C) agonist did not increase PGI(2) synthesis. The combination of VEGFR-1 and VEGFR-2 agonists did not increase PGI(2) release. Pretreatment with a VEGFR-2 inhibitor abrogated PGI(2) release mediated by VEGF-A(165) and VEGF-A(121), and pretreatment of BAEC with antisense oligomers targeting VEGFR-1 or VEGFR-2 mRNA reduced PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121) up to 79%. In summary, our data demonstrate that the activation of VEGFR-1 and VEGFR-2 heterodimer (VEGFR-1/R-2) is essential for PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121), which cannot be reproduced by the parallel activation of VEGFR-1 and VEGFR-2 homodimers with corresponding agonists. In addition, the binding of VEGF-A(165) to NRP-1 potentiates its capacity to promote PGI(2) synthesis.  相似文献   

11.
Nitric oxide (NO) release from endothelial cells, via endothelial NO synthase (eNOS) activation, is central to the proangiogenic actions of vascular endothelial growth factor (VEGF). VEGF signaling to eNOS is principally mediated by an Akt-dependent phosphorylation of eNOS and by increased association of eNOS to the molecular chaperone, heat-shock protein 90 kDa (Hsp90). Herein, we report that VEGFR-2 activation induces tyrosine phosphorylation of VEGF receptor 2 (VEGFR-2)-associated Hsp90beta. Tyrosine phosphorylation of Hsp90beta in response to VEGF is dependent on internalization of the VEGFR-2 and on Src kinase activation. Furthermore, we demonstrate that c-Src directly phosphorylates Hsp90 on tyrosine 300 residue and that this event is essential for VEGF-stimulated eNOS association to Hsp90 and thus NO release from endothelial cells. Our work identifies Y300 phosphorylation of Hsp90 as a novel regulated posttranslational modification of the chaperone and demonstrates its importance in the proangiogenic actions of VEGF, namely by regulating NO release from endothelial cells.  相似文献   

12.
Gab1 was previously described as a positive modulator of Akt, Src, ERK1/2, endothelial cell migration, and capillary formation in response to vascular endothelial growth factor (VEGF). However, its involvement in endothelial cell survival, as well as the potential contribution of the other family member Gab2 to signalling and biological responses remained unknown. Here, we show that Gab2 is tyrosine phosphorylated in a Grb2-dependent manner downstream of activated VEGF receptor-2 (VEGFR2), and that it associates with signalling proteins including PI3K and SHP2, but apparently not with the receptor. Similarly to Gab1, over-expression of Gab2 induces endothelial cell migration in response to VEGF, whereas its depletion using siRNAs results in its reduction. Importantly, depletion of both Gab1 and Gab2 leads to an even greater inhibition of VEGF-induced cell migration. However, contrary to what has been reported for Gab1, the silencing of Gab2 results in increased Src, Akt and ERK1/2 activation, slightly reduced p38 phosphorylation, and up-regulation of Gab1 protein levels. Accordingly, re-expression of Gab2 in Gab2?/? fibroblasts leads to opposite results, suggesting that the modulation of both Gab2 and Gab1 expression in these conditions might contribute to the impaired signalling observed. Consistent with their opposite roles on Akt, the depletion of Gab1, but not of Gab2, results in reduced FOXO1 phosphorylation and VEGF-mediated endothelial cell survival. Mutation of VEGFR2 Y801 and Y1214, which abrogates the phosphorylation of Gab1, also correlates with inhibition of Akt. Altogether, these results underscore the non-redundant and essential roles of Gab1 and Gab2 in endothelial cells, and suggest major contributions of these proteins during in vivo angiogenesis.  相似文献   

13.
We previously reported that vascular endothelial growth factor (VEGF) increases vascular permeability through the synthesis of endothelial platelet-activating factor (PAF), while others reported the contribution of nitric oxide (NO). Herein, we addressed the contribution of VEGF receptors and the role played by PAF and NO in VEGF-induced plasma protein extravasation. Using a modified Miles assay, intradermal injection in mice ears of VEGF-A(165), VEGF-A(121), and VEGF-C (1 microM) which activate VEGFR-2 (Flk-1) receptor increased vascular permeability, whereas a treatment with VEGFR-1 (Flt-1) analogs; PlGF and VEGF-B (1 microM) had no such effect. Pretreatment of mice with PAF receptor antagonist (LAU8080) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NAME) abrogated protein extravasation mediated by VEGF-A(165). As opposed to PAF (0.01-1 microM), treatment with acetylcholine (ACh; up to 100 microM; inducer of NO synthesis) or sodium nitroprusside (SNP; up to 1 microM; NO donor) did not induce protein leakage. Simultaneous pretreatment of mice with eNOS and protein kinase A (PKA) inhibitors restored VEGF-A(165) vascular hyperpermeability suggesting that endogenous NO synthesis leads to PKA inhibition, which support maintenance of vascular integrity. Our data demonstrate that VEGF analogs increase vascular permeability through VEGFR-2 activation, and that both endogenous PAF and NO synthesis contribute to VEGF-A(165)-mediated vascular permeability. However, PAF but not NO directly increases vascular permeability per se, thereby, suggesting that PAF is a direct inflammatory mediator, whereas NO serves as a cofactor in VEGF-A(165) proinflammatory activities.  相似文献   

14.
The role of the vascular endothelial growth factor receptor-1 (VEGFR-1) in endothelial cell function is unclear. We have previously identified four tyrosine phosphorylation sites in the C-terminal tail of this receptor. We now show that the wild type VEGFR-1 expressed in porcine aortic endothelial (PAE/VEGFR-1) cells was able to transduce signals for increased DNA synthesis and proliferation. Tyrosine phosphorylation of phospholipase Cgamma (PLCgamma), tyrosine phosphatase SHP-2, Crk, and extracellular regulated kinases 1 and 2 (Erk1/2) was registered in response to VEGF-A treatment of the PAE/VEGFR-1 cells. VEGFR-1 mutated at Y1213, Y1242, and Y1333 were constructed and expressed in PAE cells, to the same level as that of PAE/VEGFR-1 cells. The affinities of the wild type and mutated receptors for VEGF-A(165) binding were similar. The mutated VEGFR-1 Y1213F expressed in PAE cells was kinase inactive. PAE cells expressing the mutated VEGFR-1 Y1242F and Y1333F receptors mediated increased tyrosine phosphorylation of PLCgamma in response to VEGF-A stimulation. However, these two mutant VEGFR-1 failed to mediate increased mitogenesis and were unable to stimulate increased tyrosine phosphorylation of SHP-2, Crk, and Erk1/2, indicating that the mutations lead to a perturbation in VEGF-A-induced signal transduction.  相似文献   

15.
FLK-1/vascular endothelial growth factor receptor 2 (VEGFR-2) is one of the receptors for VEGF. In this study we examined the effect of cell density on activation of VEGFR-2. VEGF induces only very slight tyrosine phosphorylation of VEGFR-2 in confluent (95-100% confluent) pig aortic endothelial (PAE) cells. In contrast, robust VEGF-dependent tyrosine phosphorylation of VEGFR-2 was observed in cells plated in sparse culture conditions (60-65% confluent). A similar cell density-dependent phenomenon was observed in different endothelial cells but not in NIH-3T3 fibroblast cells expressing VEGFR-2. Stimulating cells with high concentrations of VEGF or replacing the extracellular domain of VEGFR-2 with that of the colony-stimulating factor 1 receptor did not alleviate the sensitivity of VEGFR-2 to cell density, indicating that the confluent cells were probably not secreting an antagonist to VEGF. Furthermore, in PAE cells, ectopically introduced platelet-derived growth factor alpha receptor could be activated at both high and low cell density conditions, indicating that the density effect was not universal for all receptor tyrosine kinases expressed in endothelial cells. In addition to lowering the density of cells, removing divalent cations from the medium of confluent cells potentiated VEGFR-2 phosphorylation in response to VEGF. These findings suggested that cell-cell contact may be playing a role in regulating the activation of VEGFR-2. To this end, pretreatment of confluent PAE cells with a neutralizing anti-cadherin-5 antibody potentiated the response of VEGFR-2 to VEGF. Our data demonstrate that endothelial cell density plays a critical role in regulating VEGFR-2 activity, and that the underlying mechanism appears to involve cadherin-5.  相似文献   

16.
Ligand-stimulated degradation of receptor tyrosine kinase (RTK) is an important regulatory step of signal transduction. The vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is responsible for the VEGF-stimulated nitric oxide (NO) production from endothelial cells. Cellular mechanisms mediating the negative regulation of Flk-1 signaling in endothelial cells have not been investigated. Here we show that Flk-1 is rapidly down-regulated following VEGF stimulation of bovine aortic endothelial cells (BAECs). Consequently, VEGF pretreatment of endothelial cells prevents any further stimulation of Flk-1, resulting in decreased NO production from subsequent VEGF challenges. Ubiquitination of RTKs targets them for degradation; we demonstrate that activation of Flk-1 by VEGF leads to its polyubiquitination in BAECs. Furthermore, VEGF stimulation of BAECs or COS-7 cells transiently transfected with Flk-1 results in the phosphorylation of the ubiquitin ligase Cbl, the enhanced association of Cbl with Flk-1, and the relocalization of Cbl to vesicular structures in BAECs. Overexpression of Cbl in COS-7 cells enhances VEGF-induced ubiquitination of Flk-1, whereas a Cbl mutant lacking the ubiquitin ligase RING finger domain, 70Z/3-Cbl, does not. Moreover, expression of Cbl in contrast to 70Z/3-Cbl inhibits the Flk-1-dependent activation of eNOS and, thus, NO release. In BAEC overexpressing Cbl, the degradation of Flk-1 upon VEGF stimulation is accelerated compared with cells transfected with a control vector (green fluorescent protein). Our findings demonstrate that Flk-1 is rapidly down-regulated following sustained VEGF stimulation and identify Cbl as a negative regulator of Flk-1 signaling to eNOS. Cbl thus plays a role in the regulation of VEGF signaling by mediating the stimulated ubiquitination and, consequently, degradation of Flk-1 in endothelial cells.  相似文献   

17.
KDR/Flk-1 tyrosine kinase, one of the two vascular endothelial growth factor (VEGF) receptors, induces mitogenesis and differentiation of vascular endothelial cells. To understand the mechanisms underlying the VEGF-A-induced growth signaling pathway, we constructed a series of human KDR mutants and examined their biological properties. An in vitro kinase assay and subsequent tryptic peptide mapping revealed that Y1175 and Y1214 are the two major VEGF-A-dependent autophosphorylation sites. Using an antibody highly specific to the phosphoY1175 region, we demonstrated that Y1175 is phosphorylated rapidly in vivo in primary endothelial cells. When the mutated KDRs were introduced into the endothelial cell lines by adenoviral vectors, only the Y1175F KDR, Tyr1175 to phenylalanine mutant, lost the ability to tyrosine phosphorylate phospholipase C-gamma and, significantly, reduced MAP kinase phosphorylation and DNA synthesis in response to VEGF-A. Furthermore, primary endothelial cells microinjected with anti-phosphoY1175 antibody clearly decreased DNA synthesis compared with control cells. These findings strongly suggest that autophosphorylation of Y1175 on KDR is crucial for endothelial cell proliferation, and that this region is a new target for anti-angiogenic reagents.  相似文献   

18.
血管内皮生长因子受体-2所介导信号通路的研究进展   总被引:2,自引:0,他引:2  
血管新生是许多生理和病理进程发生的重要机理.在生物体内,血管新生需经过多步精细调控历程,现有研究表明,血管内皮生长因子(VEGF)及其受体蛋白酪氨酸激酶,尤其是血管内皮生长因子受体-2(VEGFR-2)所介导的信号级联通路是其中关键性的调节途径.VEGF/VEGFR-2所介导的信号级联通路可以调控血管内皮细胞的增殖、迁移、存活和通透性的改变,促进血管的新生.VEGF与VEGFR-2的胞外区特异性结合后,引起受体的二聚化和自身的交互磷酸化,使胞内特定的酪氨酸残基磷酸化.下游信号蛋白可以通过其Src同源结构域-2(SH2)与VEGFR-2结合,随后激活下游的效应蛋白,调控内皮细胞的生物学活性.此外,VEGF/VEGFR-2信号通路还可以下调树突细胞(DC)的活性.对VEGF/VEGFR-2信号通路作用的深入了解,将有助于新药的研发.  相似文献   

19.
Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers   总被引:5,自引:0,他引:5  
Vascular endothelial growth factor (VEGF-A) exerts its effects through receptor tyrosine kinases VEGF receptor-1 (VEGFR-1) and VEGFR-2, which are expressed on most endothelial cell types in vitro and in vivo. We have examined VEGF-A-induced signal transduction in porcine aortic endothelial (PAE) cells individually expressing VEGFR-1 or VEGFR-2, and cells co-expressing both receptor types. We show that VEGF-A-stimulated PAE cells co-expressing VEGFR-1 and -2 contain receptor heterodimers. VEGF-A-stimulation of all three cell lines (expressing VEGFR-1, -2 and -1/2) resulted in signal transduction with different efficiencies. Thus, tyrosine phosphorylation of phospholipase Cgamma, and accumulation of inositol polyphosphates were efficiently transduced in the VEGFR-1/2 cells whereas cells expressing VEGFR-1 responded poorly in these assays. In contrast, VEGF-A-induced activation of phosphoinositide 3-kinase and induction of Ca2+ fluxes were transduced well by VEGFR-1 and VEGFR-2 homo- and heterodimers. The pattern of Ca2+ fluxes was unique for each type of VEGF receptor dimer. Our data show that signal transduction induced by VEGF-A is transduced in distinct manners by homo- and heterodimers of VEGF receptors.  相似文献   

20.
The internalization and degradation of vascular endothelial growth factor receptor 2 (VEGFR-2), a potent angiogenic receptor tyrosine kinase, is a central mechanism for the regulation of the coordinated action of VEGF in angiogenesis. Here, we show that VEGFR-2 is ubiquitinated in response to VEGF, and Lys 48-linked polyubiquitination controls its degradation via the 26S proteosome. The degradation and ubiquitination of VEGFR-2 is controlled by its PEST domain, and the phosphorylation of Ser1188/Ser1191 is required for the ubiquitination of VEGFR-2. F-box-containing β-Trcp1 ubiquitin E3 ligase is recruited to S1188/S1191 VEGFR-2 and mediates the ubiquitination and degradation of VEGFR-2. The PEST domain also controls the activation of p38 mitogen-activated protein kinase (MAPK) through phospho-Y1173. The activation of p38 stabilizes VEGFR-2, and its inactivation accelerates VEGFR-2 downregulation. The VEGFR-2-mediated activation of p38 is established through the protein kinase A (PKA)/MKK6 pathway. PKA is recruited to VEGFR-2 through AKAP1/AKAP149, and its phosphorylation requires Y1173 of VEGFR-2. The study has identified a unique mechanism in which VEGFR-2 stability and degradation is modulated. The PEST domain acts as a dual modulator of VEGFR-2; the phosphorylation of S1188/S1191 controls ubiquitination and degradation via β-Trcp1, where the phosphorylation of Y1173 through PKA/p38 MAPK controls the stability of VEGFR-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号