首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu CP  Li NS  Xiao L  Deng HW  Li YJ 《Regulatory peptides》2003,114(1):45-49
In the present study, we examined whether rutaecarpine protects against myocardial ischemia-reperfusion injury in rats and whether the protective effects of rutaecarpine are related to activation of capsaicin-sensitive sensory nerves. Rats were pretreated with rutaecarpine 10 min before the experiment, and then the left main coronary artery of rat hearts was subjected to 60-min occlusion followed by 3-h reperfusion. The infarct size, serum concentration of creatine kinase, and CGRP concentration in plasma were measured. Pretreatment with rutaecarpine (100 or 300 microg/kg, i.v.) significantly reduced infarct size and creatine kinase release concomitantly with a significant increase in plasma concentrations of CGRP. These effects of rutaecarpine were completely abolished by capsazepine (38 mg/kg, s.c.), a competitive vanilloid receptor antagonist, or by pretreatment with capsaicin (50 mg/kg, s.c.), which selectively depletes transmitters in capsaicin-sensitive sensory nerves. These results suggest that rutaecarpine protects against myocardial ischemia-reperfusion injury in rats and that the protective effects of rutaecarpine are related to activation of capsaicin-sensitive sensory nerves via activating vanilloid receptors.  相似文献   

2.
Yu J  Tan GS  Deng PY  Xu KP  Hu CP  Li YJ 《Regulatory peptides》2005,125(1-3):93-97
Previous investigations have indicated that calcitonin gene-related peptide (CGRP), a principal transmitter in capsaicin-sensitive sensory nerves, could alleviate cardiac anaphylaxis injury. Rutaecarpine relaxes vascular smooth by stimulation of CGRP release via activation of vanilloid receptor subtype 1 (VR1). In the present study, we examined the role of capsaicin-sensitive sensory nerves in anaphylactic vessels and the effect of rutaecarpine on antigen-challenged constriction in the guinea pig isolated thoracic aorta. The aortas were challenged with 0.01 mg/ml bovine serum albumin, and the tension of aorta rings was continuously monitored. The amount of CGRP released from thoracic aortas was determined in the absence or presence of rutaecarpine. Antigen challenge caused a vasoconstrictor response concomitantly with an increase in the release of CGRP from the isolated thoracic aorta, and the vasoconstrictor responses were potentiated by CGRP8-37 (10 microM) or capsaicin (1 microM). Pretreatment with diphenhydramine (1 microM) markedly decreased antigen-challenged vasoconstriction. Acute application of capsaicin (0.03 or 0.1 microM) significantly inhibited vasoconstrictor responses. Pretreatment with rutaecarpine (10 or 30 microM) significantly increased CGRP release concomitantly with decrease in antigen-challenged vasoconstriction, which was abolished by CGRP8-37 (10 microM) or capsazepine (10 microM). The present results suggest that an increase in the release of CGRP during vascular anaphylaxis may be a beneficial compensatory response, and that rutaecarpine inhibits antigen-challenged vasoconstriction, which is related to stimulation of endogenous CGRP release via activation of VR1.  相似文献   

3.
Our recent study has shown that asymmetric dimethylarginine (ADMA) plays an important role in facilitating gastric mucosal injury by multiple factors. To explore whether the protection of rutaecarpine against gastric mucosal injury is related to reduction of ADMA content, a model of ethanol-induced gastric mucosal injury in rats was selected for this study. The ulcer index, the content of ADMA and NO, and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in gastric tissues were measured in vivo after pretreatment with rutaecarpine. The in vitro effect of rutaecarpine on the release of calcitonin gene-related peptide (CGRP) and NO from isolated gastric tissues was also determined. The results showed that ethanol significantly increased the ulcer index, decreased the DDAH activity and the NO level, and elevated the ADMA level, which was attenuated by pretreatment with rutaecarpine (0.6 mg/kg or 1.2 mg/kg). In the isolated gastric tissues, rutaecarpine significantly increased the release of both CGRP and NO; the release of NO, but not CGRP, was abolished in the presence of l-NAME (10(-4) mol/L). The present results suggest that rutaecarpine protects the gastric mucosa against injury induced by ethanol and that the gastroprotection of rutaecarpine is related to reduction of ADMA levels through stimulating the release of CGRP.  相似文献   

4.
Stimulation of capsaicin sensitive nerves or administration of calcitonin gene-related peptide (CGRP) before induction of acute pancreatitis (AP) attenuates pancreatic damage, whereas CGRP administration after development of AP aggravates lesion of pancreatic tissue. The aim of this study was to determine the effect of prolonged activity of sensory nerves or CGRP administration on the pancreatic repair after repeated episodes of AP. Five episodes of acute caerulein-induced pancreatitis (10 microg/kg/h for 5 h s.c.) were performed at weekly intervals in rats receiving either vehicle or capsaicin at the sensory nerve stimulatory dose (0.5 mg/kg, 3 times daily), or CGRP (10 microg/kg, 3 times daily). Two weeks after the last induction of AP morphological signs of pancreatic damage, pancreatic blood flow (PBF), serum and pancreatic amylase activity, fecal chymotrypsin activity, pancreatic weight, pancreatic RNA and DNA content, as well as, serum interleukin-1beta (Il-1beta ) were assessed. Pancreata of animals receiving vehicle alone showed almost full recovery within two weeks after last episode of pancreatitis induction. In capsaicin-treated group of rats, we observed the increase in PBF by 44% and in serum Il-1beta concentration by 91%. The pancreatic amylase activity, fecal activity of chymotrypsin, pancreatic nucleic acids content and DNA synthesis were decreased. In rats treated with CGRP the alterations in PBF, serum Il-1beta concentration, as well as, in pancreatic and fecal activity of enzymes were similar to capsaicin treated group but less pronounced. We conclude that prolonged activity of capsaicin-sensitive sensory nerves and the presence of their main mediator-CGRP during pancreatic regeneration after AP leads to pancreatic functional insufficiency typical for chronic pancreatitis.  相似文献   

5.
Song QJ  Li YJ  Deng HW 《Regulatory peptides》1999,79(2-3):141-145
Previous studies have shown improvement of preservation with cardioplegia by calcitonin gene-related peptide (CGRP)-induced preconditioning. Therefore we examined the hypothesis that endogenous CGRP may be involved in the protection of heat stress against myocardial damages after prolonged cardioplegic arrest in isolated rat heart. Reperfusion after 4 h of hypothermic ischemia caused a decline of cardiac function and an increase of creatine kinase (CK) release. Heat stress induced by pretreatment with whole body hyperthermia (rectal 42 degrees C) for 15 min produced a significant increase in the plasma content of CGRP, an improvement of cardiac function and a decrease in the release of CK. However, after pretreatment with capsaicin (50 mg/kg, s.c.) to deplete CGRP in cardiac sensory nerves, the plasma concentration of CGRP was no longer increased and the cardioprotection afforded by heat stress was abolished. These findings suggest that improvement of preservation with cardioplegia by heat stress may be mediated by endogenous CGRP in the rat.  相似文献   

6.
Central nervous system affects pancreatic secretion of enzymes however, the neural modulation of acute pancreatitis has not been investigated. Leptin and melatonin have been recently reported to affect the inflammatory response of various tissues. The identification of specific receptors for both peptides in the pancreas suggests that leptin and melatonin could contribute to the pancreatic protection against inflammation. The aim of this study was: 1/ to compare the effect of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) administration of leptin or melatonin on the course of caerulein-induced pancreatitis (CIP) in the rat, 2/ to examine the involvement of sensory nerves (SN) and calcitonin gene-related peptide (CGRP) in pancreatic protection afforded by leptin or melatonin, 3/ to assess the effect of tested peptides on lipid peroxidation products (MDA + 4-HNE) in the pancreas of CIP rats, 4/ to investigate the influence of leptin or melatonin on nitric oxide (NO) release from isolated pancreatic acini and 5/ to determine the effects of caerulein and leptin on leptin receptor gene expression in these acini by RT-PCR. CIP was induced by subcutaneous (s.c.) infusion of caerulein (25 microg/kg) to the conscious rats, confirmed by the significant increases of pancreatic weight and plasma amylase and by histological examination. This was accompanied in marked reduction of pancreatic blood flow and significant rise of MDA + 4-HNE in the pancreas. Leptin or melatonin were administered i.p. or i.c.v. 30 min prior to the start of CIP. Deactivation of SN was produced by s.c. capsaicin (100 mg/kg). An antagonist of CGRP, CGRP 8-37 (100 microg/kg i.p.), was given together with leptin or melatonin to the CIP rats. MDA + 4-HNE was measured using LPO commercial kit. NO was determined using the Griess reaction. Pretreatment of CIP rats with i.p. leptin (2 or 10 microg/kg) or melatonin (10 or 50 mg/kg) significantly attenuated the severity of CIP. Similar protective effects were observed following i.c.v. application of leptin (0.4 or 2 microg/rat) but not melatonin (10 or 40 microg/rat) to the CIP rats. Capsaicin deactivation of SN oradministration of CGRP 8-37 abolished above beneficial effects of leptin on CIP, whereas melatonin-induced protection of pancreas was unaffected. Pretreatment with i.p. melatonin (10 or 50 mg/kg), but not leptin, significantly reduced MDA + 4-HNE in the pancreas of CIP rats. Leptin (10(-10) - 10(-6) M) but not melatonin (10(-8) - 10(-5) M) significantly stimulated NO release from isolated pancreatic acini. Leptin receptor gene expression in these acini was significantly increased by caerulein and leptin. We conclude that 1/ central or peripheral pretreatment with leptin protects the pancreas against its damage induced by CIP, whereas melatonin exerts its protective effect only when given i.p., but not following its i.c.v. adminstration, 2/ activation of leptin receptor in the pancreatic acini appears to be involved in the beneficial effects of leptin on acute pancreatitis, 3/ the protective effects of leptin involve sensory nerves, CGRP and increased generation of NO whereas melatonin-induced protection of the pancreas depends mainly on the antioxidant local effect of this indole, and scavenging of the radical oxygen species in the pancreatic tissue.  相似文献   

7.
Calcitonin gene-related peptide and hypertension   总被引:7,自引:0,他引:7  
Deng PY  Li YJ 《Peptides》2005,26(9):1676-1685
Capsaicin-sensitive sensory nerves participate in the regulation of cardiovascular functions both in the normal state and the pathophysiology of hypertension through the actions of potent vasodilator neuropeptides, including calcitonin gene-related peptide (CGRP). CGRP, a very potent vasodilator, is the predominant neurotransmitter in capsaicin-sensitive sensory nerves, and plays an important role in the initiation, progression and maintenance of hypertension via: (1) the alterations in its synthesis and release and/or in vascular sensitivity response to it; (2) interactions with pro-hypertensive systems, including renin-angiotensin-aldosterone system, sympathetic nervous system and endothelin system; and (3) anti-hypertrophy and anti-proliferation of vascular smooth muscle cells. The decrease in CGRP synthesis and release contributes to the elevated blood pressure, as shown in the spontaneously hypertensive rats, alpha-CGRP knockout mice, Dahl-salt or phenol-induced hypertensive rats. In contrast, the increase in CGRP levels or the enhancement of vascular sensitivity response to CGRP plays a beneficial compensatory depressor role in the development of hypertension, as shown in deoxycorticosterone-salt, sub-total nephrectomy-salt, N(omega)-nitro-L-arginine methyl ester or two-kidney, one-clip models of hypertension in rats. We found that rutaecarpine causes a sustained depressor action by stimulation of CGRP synthesis and release via activation of vanilloid receptor subtype 1 (VR1) in hypertensive rats, which reveals the therapeutic implications of VR1 agonists for treatment of hypertension.  相似文献   

8.
Zhou ZH  Deng HW  Li YJ 《Life sciences》2001,69(11):1313-1320
Previous investigations have suggested that vasodilator responses to nitroglycerin involve in stimulation of calcitonin gene-related peptide (CGRP) release. Therefore, we tested whether depressor effect of nitroglycerin is mediated by CGRP. A catheter was inserted into the left femoral artery to record blood pressure and drugs were administered through cannulae inserted into the right femoral vein. Nitroglycerin (15, 30, 60, 120 and 150 microg/kg) caused depressor effects in a dose-dependent manner. Nitroglycerin (30 or 150 microg/kg) caused a depressor effect with an increase in plasma concentrations of CGRP. The effects of nitroglycerin were significantly attenuated by methylene blue, an inhibitor of guanylate cyclase, or by pretreatment with capsaicin (50 mg x kg(-1), s.c.), which depletes neurotransmitters in sensory nerves. The present study suggests that the depressor effect of nitroglycerin is related to stimulation of CGRP release in the rat.  相似文献   

9.
The effect of calcitonin gene-related peptide (CGRP) on the feline lower esophageal sphincter (LES) was determined and correlated with its anatomic distribution as determined by immunohistochemistry. Intraluminal pressures of the esophagus and LES were recorded in anesthetized cats. In separate cats, gastroesophageal junctions were removed after locating the LES manometrically and stained for CGRP-like immunoreactivity (LI) and substance P-LI (SP-LI) by indirect immunohistochemistry. CGRP-LI in the LES was most prominent in large nerve fascicles between the circular and longitudinal muscle layers and only rarely seen in nerve fibers within the circular muscle. The myenteric plexus contained numerous CGRP-LI nerve fibers but cell bodies were not seen. Many CGRP-LI nerve fibers in the myenteric plexus and occasional varicose nerves in the circular muscle demonstrated colocalization with SP-LI. Colocalization of CGRP-LI with SP-LI was also seen in the perivascular nerves of the submucosal and intramural blood vessels and in varicose fibers in the lamina propria of the gastric fundic mucosa. In the esophagus, CGRP-LI nerves extended through the muscularis mucosa and penetrated the squamous epithelium to the lumen. CGRP, given intra-arterially caused a dose-dependent fall in basal LES pressure, with a threshold dose of 10(-8) g/kg (2.63 pmol/kg). At the maximal effective dose, 5 x 10(-6) g/kg (1.31 x 10(3) pmol/kg), CGRP produced 61.0 +/- 6.0% decrease in basal LES pressure. At this dose, mean systemic blood pressure fell by 40.9 +/- 7.8%. The LES relaxation induced by a submaximal dose of CGRP (10(-6) g/kg, 262.7 pmol/kg), 50.3 +/- 3.2% relaxation was partially inhibited by tetrodotoxin (26.9 +/- 10.8% relaxation, P less than 0.025). The inhibitory effect of CGRP was not affected by cervical vagotomy, hexamethonium, atropine, propranolol, or naloxone. The LES contractile response to the D90 of SP (5 x 10(-8) g/kg, 37.1 pmol/kg) was not altered by CGRP 10(-8) or 10(-6) g/kg and the CGRP relaxation effect was not altered by the threshold dose of substance P (5 X 10(-9) g/kg, 3.71 pmol/kg). CONCLUSIONS: (1) CGRP-LI is present at the feline LES and is primarily seen in large nerve fascicles which pass from the intermuscular plane and through the circular muscle layer to the submucosa and in mucosal nerves. (2) CGRP colocalizes with SP-LI in some varicose nerve fibers of the circular muscle of the esophagus, LES and fundus, in perivascular nerves of the submucosal and intramucosal blood vessels, and in nerves of the lamina propria of the gastric fundus. (3) The luminal penetration of CGRP-LI nerves in the squamous mucosa of the esophagus suggests a sensory func  相似文献   

10.
In order to explore whether monophosphoryl lipid A (MLA)-induced delayed cadioprotection is mediated by calcitonin gene-related peptide (CGRP) and the regulatory effect of inducible heme oxygenase isorform (HO-1)/carbon monoxide (CO) on CGRP synthesis and release, the expression of CGRP and HO-1 in dorsal root ganglia (DRG) and CGRP concentration in plasma were determined in rats. Pretreatment with MLA (500 microg/kg, i.p.) significantly reduced infarct size and creatine kinase release after the 45-min coronary artery occlusion and 180-min reperfusion. MLA caused a significant increase in the expression of CGRP and HO-1 and plasma concentrations of CGRP. The cardioprotection as well as the synthesis and release of CGRP induced by MLA were completely abolished by pretreatment with zinc protoporphrin IX (ZnPP-9), an inhibitor of HO-1, or by capsaicin (50 mg/kg, s.c.), which selectively depletes transmitters in capsaicin-sensitive sensory nerves. Pretreatment with Znpp-9 had no effect on HO-1 expression, but capsaicin abrogated the expression of HO-1 induced by MLA in DRG. These results suggest that the delayed cardioprotection afforded by MLA is mediated by CGRP via activation of the HO-1 pathway.  相似文献   

11.
Li D  Li NS  Chen QQ  Guo R  Xu PS  Deng HW  Li YJ 《Regulatory peptides》2008,147(1-3):4-8
Previous studies have demonstrated that endogenous calcitonin gene-related peptide (CGRP) plays an important role in mediation of ischemic preconditioning. In the present study, we tested whether CGRP is also involved in mediation of the protective effects of postconditioning in isolated rat hearts. Sixty minutes of left coronary artery occlusion and followed by 60 min of reperfusion caused a significant decrease in cardiac function and a significant increase in creatine kinase (CK) release and infarct size. Postconditioning with three cycles of 1-min ischemia and 1-min reperfusion produced a marked improvement of cardiac function and decreased CK release and infarct size, concomitantly with an increase in the release of CGRP release in coronary effluent. However, the cardioprotection afforded by postconditioning was abolished by CGRP 8-37 (10− 7 M), a selective CGRP receptor antagonist, or pretreatment with capsaicin (50 mg/kg, s.c.), which depletes transmitters in sensory nerves. Exogenous CGRP (5 × 10− 9 M) administration of CGRP reappeared postconditioning-like cardioprotection in the rats pretreated with capsaicin. These results suggest that the protective effects of ischemic postconditioning are related to stimulation of endogenous CGRP release in rat hearts.  相似文献   

12.
Stimulation of sensory nerves in the airway mucosa causes local release of the neuropeptides substance P and calcitonin gene-related peptide (CGRP). In this study we used a modification of the reference-sample microsphere technique to measure changes in regional blood flow and cardiac output distribution produced in the rat by substance P, CGRP, and capsaicin (a drug that releases endogenous neuropeptides from sensory nerves). Three sets of microspheres labeled with different radionuclides were injected into the left ventricle of anesthetized F344 rats before, immediately after, and 5 min after left ventricular injections of capsaicin, substance P, or CGRP. The reference blood sample was withdrawn from the abdominal aorta and was simultaneously replaced with 0.9% NaCl at 37 degrees C. We found that stimulation of sensory nerves with a low dose of capsaicin causes a large and selective increase in microvascular blood flow in the extrapulmonary airways. The effect of capsaicin is mimicked by systemic injection of substance P but not by CGRP, suggesting that substance P is the main agent of neurogenic vasodilation in rat airways.  相似文献   

13.
14.
Cardiac remodeling is a key determinant in the clinical course and outcome of heart failure and characterized by cardiac hypertrophy, fibrosis, cardiomyocyte apoptosis and inflammation. The anti-inflammatory, anti-apoptotic and anti-fibrotic effects of paeoniflorin have been identified in various types of tissue and cells. However, the role of paeoniflorin in cardiac remodeling remains unclear. We performed aortic banding (AB) in mice to induce a cardiac remodeling model in response to pressure overload. Paeoniflorin (20 mg/kg) was administered by daily intraperitoneal (i.p.) injection. Paeoniflorin treatment promoted the survival rate and improved cardiac function of mice at 8 weeks post surgery. AB-induced cardiac hypertrophy, as assessed by heart weight, gross heart, HE and WGA staining, cross-sectional area of cardiomyocyte and mRNA expresssion of hypertrophic makers, was attenuated by paeoniflorin. Paeoniflorin also inhibited collagen deposition, expression of TGFβ, CTGF, collagen Iα and collagen IIIα, and phosphorylation of Smad2 and Smad3 in the heart exposed to pressure overload. Cardiomyocyte apoptosis and induction of Bax and cleaved caspase3 in response to AB were suppressed by paeoniflorin. Furthermore, paeoniflorin decreased the quantity of CD68+ cells, protein levels of TNF-α and IL-1β, and phosphorylation of IκBα and NFκB-p65 in the heart after AB. In conclusion, paeoniflorin attenuated cardiac hypertrophy, fibrosis, apoptosis and inflammation, and improved left ventricular function in pressure overloaded mice. The cardioprotective effect of paeoniflorin is associated with the inhibition of TGFβ/Smads and NF-κB pathways.  相似文献   

15.
Cardioprotective role of intravenous administration of magnesium chloride was evaluated in rabbits by biochemical and histopathological parameters. Myocardial damage was induced by injecting (i.v.) isoprenaline 1, 2.5, 5 and 7.5 mg/kg body weight of animal. There was a dose dependent increase in the activity of cardiac enzyme creatinine kinase CK (C Max). Maximal elevation of CK (C Max) was observed with 2.5 mg isoprenaline. The mean T-max (mean of the time duration in hr at which maximum creatinine kinase activity of individual rabbit was observed in a group) shifted early, significantly with 2.5, 5 and 7.5 mg isoprenaline compared to control group. Histopathologically, myocardial damage was quite significant in 2.5 mg isoprenaline subgroup of animals. A mortality of 29% was observed in animals injected with 5 and 7.5 mg isoprenaline, whereas all animals subjected with 1 and 2.5 mg isoprenaline were alive for 72 hr. Considering the data on serial determination of cardiac enzyme CK and histopathological changes, 2.5 mg isoprenaline was chosen as standard dose to study efficacy of cardioprotection by gold standard verapamil and magnesium chloride. Verapamil (5 microM) injected prior to 2.5 mg isoprenaline administration revealed significant reduction of CK (C Max) activity (P < 0.05) compared to animals infused with isoprenaline alone. T-max value did not show any alteration in both the groups. Histopathological findings showed no areas of necrosis and cellular infiltrates in animals primed with 2.5 mg isoprenaline following verapamil. Highly significant reduction in CK (C-max) activity was observed in animals administered with 40 mg magnesium chloride prior to isoprenaline compared to animals treated with isoprenaline alone (P < 0.001). In addition to this, significant delay in T-max of CK activity was observed in group treated with 40 mg magnesium chloride and isoprenaline compared to group treated with only isoprenaline (P < 0.01). The study clearly highlighted and confirmed the valuable role of magnesium chloride as cardioprotective agent.  相似文献   

16.
Matsuda H  Li Y  Yoshikawa M 《Life sciences》2000,67(24):2921-2927
It was previously reported that escin Ib isolated from horse chestnut inhibited gastric emptying (GE) in mice, in which the capsaicin-sensitive sensory nerves (CPSN), the central nervous system and endogenous prostaglandins (PGs) were involved. In the present study, the possible involvement of dopamine and dopamine receptors in the inhibition of GE by escin Ib were investigated in mice. GE inhibition by escin Ib (25 mg/kg, p.o.) was attenuated after pretreatment with a single bolus of DL-alpha-methyl-p-tyrosine methyl ester (400 mg/kg, s.c., an inhibitor of tyrosine hydroxylase), reserpine (5 mg/kg, p.o., a catecholamine depletor), 6-hydroxydopamine (80 mg/kg, i.p., a dopamine depletor). Furthermore, pretreatment with spiperone (0.5-5 mg/kg, s.c., a dopamine2 receptor antagonist), haloperidol (0.5-10 mg/kg, s.c.) and metoclopramide (1-10 mg/kg, s.c.) (centrally acting dopamine2 receptor antagonists) attenuated the effect of escin Ib. Domperidone (0.1-5 mg/kg, s.c., a peripheral-acting dopamine2 antagonist) showed a weak attenuation, but SCH 23390 (1-5 mg/kg, s.c., a dopamine, receptor antagonist) did not. It is postulated that escin Ib inhibits GE, at least in part, mediated by CPSN, to stimulate the synthesis and/or release of dopamine, to act through central dopamine2 receptor, which in turn causes the release of PGs.  相似文献   

17.
Rutaecarpine is the major alkaloid component of Wu-Chu-Yu, a well known Chinese herbal drug. It has been reported that rutaecarpine causes the vasodilator, hypotensive effects by stimulation of CGRP synthesis and release via activation of TRPV1. In present study, 23 rutaecarpine analogues were designed and synthesized. Then, the vasodilator effects of theses compounds were screened by rat aortic ring experiment. The result showed that the 14-N atom of rutaecarpine might be the key site for the activity. The 5-carbonyl might make lower contribution to the effect. And simple substitute in indole-ring or quinazoline-ring would not enhance the vasodilator effect unless in proper position with proper group. One of these compounds, 10-methylrutaecarpine, exhibited similar effect with rutaecarpine. Further functional experiments showed its vasodilator and hypotensive effect were related to the stimulation of CGRP release via activation of TRPV1. The vasodilator effects of these compounds were evaluated and the structure–activity relationship was elucidated for the first time. The results suggested a new direction of valuable TRPV1 agonist as anti-hypertensive drugs.  相似文献   

18.
Delta 9-Tetrahydrocannabinol (20 mg/kg i.p.) and propranolol (20 and 50 mg/kg i.p.) produced marked falls in the rectal temperatures of mice kept at an ambient temperature of 22 degrees C. Propranolol (50 mg/kg i.p.) also decreased the thermogenic activity of brown fat, as measured by a decrease in the level of [3H]GDP binding to mitochondria obtained from mouse interscapular brown adipose tissue. In contrast, delta 9-tetrahydrocannabinol (20 mg/kg i.p.) did not affect mitochondrial GDP binding even though the dose used was one shown previously to depress heat production. GDP binding was also unaffected by this cannabinoid in brown adipose tissue taken from mice that had been kept at 13 degrees C instead of 22 degrees C. In mice kept at 34 degrees C, isoprenaline (0.25 and 1.0 mg/kg s.c.) induced a marked rise in rectal temperature and increased the level of GDP binding to brown fat mitochondria. Propranolol (50 mg/kg i.p.) prevented the hyperthermic response to isoprenaline, the mice becoming hypothermic instead. Delta 9-Tetrahydrocannabinol (20 mg/kg i.p.) had no effect on isoprenaline-induced hyperthermia. We conclude from these data that there is no significant involvement of brown adipose tissue in the hypothermic response of mice to delta 9-tetrahydrocannabinol.  相似文献   

19.
The regulatory neuropeptide calcitonin-gene related peptide (CGRP) has been shown to evoke a hypertrophic response in isolated cardiomyocytes in vitro, an effect which was attributed to PKC activation. Activation of PKC has previously been implicated in the development of cardiac hypertrophy. We therefore investigated the role of CGRP in pressure overload-induced hypertrophy in vivo, which has not previously been reported. Constriction of the ascending aorta of rats resulted in an increase in the heart weight to body weight ratio, increased myocyte diameter, re-expression of the fetal genes ANF, MHCbeta and skeletal alpha-actin, and decreased expression of the adult genes GLUT4 and SERCA2a. Treatment of neonatal rat pups (1-2 days old) with capsaicin (50 mg/kg), resulted in the permanent de-afferentation of small-diameter unmyelinated CGRP-containing sensory C-fibres. Such treatment caused a 68% decrease in the CGRP-like immunoreactivity of hearts isolated from 10 week old rats (p < 0.001). Contrary to expectations, aortic constriction of capsaicin treated rats had no effect on the development of hypertrophy at the trophic, morphometric or gene expression levels. The results suggest that the development of pressure overload-induced hypertrophy in vivo does not require the regulatory neuropeptide CGRP.  相似文献   

20.
Zhou FW  Li YJ  Lu R  Deng HW 《Life sciences》1999,64(13):1091-1097
This study was designed to explore the protective effect of ischemic preconditioning on reperfusion-induced coronary endothelial dysfunction, with a focus on the role of calcitonin gene-related peptide (CGRP) in this effect, in the isolated perfused rat heart. Thirty minutes of global ischemia and 30 min of reperfusion significantly decreased heart rate, left ventricular pressure, and its first derivative and impaired vasodilator responses to acetylcholine. Ischemia-reperfusion did not affect vasodilator responses to sodium nitroprusside. Preconditioning induced by three cycles of 5 min of ischemia and 5 min of reperfusion produced a significant improvement in cardiac function concomitantly with an amelioration of vasodilator responses to acetylcholine. The protective effects of ischemic preconditioning were abolished by CGRP(8-37) (10(-7) M) , the selective CGRP receptor antagonist. After pretreatment with capsaicin (50 mg x kg(-1), s.c.) to deplete endogenous CGRP, the preconditioning effect was absent. Pretreatment with exogenous CGRP (5 x 10(-9) M) for 5 min induced a preconditioning-like protection. The present study suggests that the cardioprotection of ischemic preconditioning is related to the preservation of the coronary endothelial cell, and that the protective effect of preconditioning is mediated by endogenous CGRP in the isolated perfused rat heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号