首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Circadian (24 hour) PERIOD (PER) protein oscillation is dependent on the double-time (dbt) gene, a casein kinase Ivarepsilon homolog [1-3]. Without dbt activity, hypophosphorylated PER proteins over-accumulate, indicating that dbt is required for PER phosphorylation and turnover [3,4]. There is evidence of a similar role for casein kinase Ivarepsilon in the mammalian circadian clock [5,6]. We have isolated a new dbt allele, dbt(ar), which causes arrhythmic locomotor activity in homozygous viable adults, as well as molecular arrhythmicity, with constitutively high levels of PER proteins, and low levels of TIMELESS (TIM) proteins. Short-period mutations of per, but not of tim, restore rhythmicity to dbt(ar) flies. This suppression is accompanied by a restoration of PER protein oscillations. Our results suggest that short-period per mutations, and mutations of dbt, affect the same molecular step that controls nuclear PER turnover. We conclude that, in wild-type flies, the previously defined PER'short domain' [7,8] may regulate the activity of DBT on PER.  相似文献   

2.
Recent evidence suggests a link between cathepsin L (CTSL) and vascular diseases. However, its contribution to reactive oxygen species (ROS) homeostasis in the vasculature remains unknown. p66shc is a redox enzyme implicated in mitochondrial ROS generation and translation of oxidative signals. In this study, we explored the relationship between CTSL and oxidative damage in vasculature and whether the oxidative damage is mediated by p66shc.Carotid arteries from aged mice (24 months old) showed a reduction in CTSL expression compared with young wild-type mice (4 months old). Local knockdown of CTSL in carotid arteries of young mice by adenoviral vector encoding the short hairpin RNA targeting CTSL leading to premature vascular aging, as shown by mitochondrial disruption, increased β-galactosidase–positive cells, reduced telomerase activity, and up-regulation of p66shc. Knockdown of CTSL decreased the expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, III, and IV, leading to increased mitochondrial ROS and hyperpolarization of the mitochondrial membrane in vitro. Furthermore, knockdown of CTSL also stimulated ROS production and senescence in vascular cells, accompanied by the up-regulation of p66shc.However, p66shc knockdown blunted the alteration in ROS production, and senescence in CTSL knockdown vascular cells. This study suggests that CTSL knockdown partially induces vascular cells damage via increased ROS production and up-regulation of p66shc.  相似文献   

3.
Locomotor activity rhythms in a significant proportion of Siberian hamsters (Phodopus sungorus sungorus) become arrhythmic after the light-dark (LD) cycle is phase-delayed by 5 h. Arrhythmia is apparent within a few days and persists indefinitely despite the presence of the photocycle. The failure of arrhythmic hamsters to regain rhythms while housed in the LD cycle, as well as the lack of any masking of activity, suggested that the circadian system of these animals had become insensitive to light. We tested this hypothesis by examining light-induced gene expression in the suprachiasmatic nucleus (SCN). Several weeks after the phase delay, arrhythmic and re-entrained hamsters were housed in constant darkness (DD) for 24 h and administered a 30-min light pulse 2 h after predicted dark onset because light induces c-fos and per1 genes at this time in entrained animals. Brains were then removed, and tissue sections containing the SCN were processed for in situ hybridization and probed with c-fos and per1 mRNA probes made from Siberian hamster cDNA. Contrary to our prediction, light pulses induced robust expression of both c-fos and per1 in all re-entrained and arrhythmic hamsters. A separate group of animals held in DD for 10 days after the light pulse remained arrhythmic. Thus, even though the SCN of these animals responded to light, neither the LD cycle nor DD restored rhythms, as it does in other species made arrhythmic by constant light (LL). These results suggest that different mechanisms underlie arrhythmicity induced by LL or by a phase delay of the LD cycle. Whereas LL induces arrhythmicity by desynchronizing SCN neurons, phase delay-induced arrhythmicity may be due to a loss of circadian rhythms at the level of individual SCN neurons.  相似文献   

4.
PERIOD proteins are central components of the Drosophila and mammalian circadian clock. Their function is controlled by daily changes in synthesis, cellular localization, phosphorylation, degradation, as well as specific interactions with other clock components. Here we present the crystal structure of a Drosophila PERIOD (dPER) fragment comprising two tandemly organized PAS (PER-ARNT-SIM) domains (PAS-A and PAS-B) and two additional C-terminal alpha helices (alphaE and alphaF). Our analysis reveals a noncrystallographic dPER dimer mediated by intermolecular interactions of PAS-A with PAS-B and helix alphaF. We show that alphaF is essential for dPER homodimerization and that the PAS-A-alphaF interaction plays a crucial role in dPER clock function, as it is affected by the 29 hr long-period perL mutation.  相似文献   

5.
The protein encoded by the Drosophila pair-rule gene fushi tarazu (ftz) is required for the formation of the even-numbered parasegments. Here we analyze the phenotypes of ectopic expression of FTZ and FTZ protein deletions from the Tubulin 1 (Tub1) promoter. Fusion of ftz to the Tub1 promoter resulted in low-level ectopic expression of FTZ relative to FTZ expressed from the endogenous ftz gene. The effects of ectopic expression of four FTZ proteins, FTZ1–413 (full length wild-type FTZ), FTZΔ257–316 (a complete deletion of the HD), FTZΔ101–150 (a deletion that includes the major FTZ-F1 binding site) and FTZΔ151–209 were determined. Ectopic expression of FTZ1–413, FTZΔ257–316 and FTZΔ101–151 did not result in an anti-ftz phenotype; however, ectopic expression of FTZ1–413, and FTZΔ257–316 did result in a ftzUal/Rpl-like phenotype. In addition, low-level ectopic expression of FTZ1–413 and FTZΔ257–316 rescued ftz phenotypes. This was an important observation because the even-numbered parasegment pattern of FTZ expression is considered important for normal segmentation. Therefore, the rescue of ftz phenotypes by low-level FTZ expression in all cells of the embryo suggests that the even-numbered parasegment expression pattern of FTZ is not the sole factor restricting FTZ action. Low-level ectopic expression of FTZΔ151–209 resulted in the anti-ftz phenotype and rescued hypomorphic ftz-f1 phenotypes indicating that FTZΔ151–209 is a hyperactive FTZ molecule. Therefore, the region encompassing amino acids 151–209 of FTZ is required in some manner for repression of FTZ activity. These results are discussed in relation to the current understanding of the mechanism of FTZ action.  相似文献   

6.
7.
8.
9.
Antibodies that specifically recognize proteins encoded by the homeotic genes: Sex combs reduced, Deformed, labial and proboscipedia, were used to follow the distribution of these gene products during embryogenesis. The position of engrailed-expressing cells was used as a reference and staining conditions were established that could distinguish, among cells expressing engrailed, one of the homeotic proteins or both. Our observations demonstrate two important facts about establishing identity in the head segments. First, in contrast to the overlapping pattern of homeotic gene expression in the trunk segments, we observe a non-overlapping pattern in the head for those homeotic proteins required during embryogenesis. In contrast, the spatial accumulation of the protein product of the non-vital proboscipedia locus overlaps partially with the distribution of the Deformed and Sex combs reduced proteins in the maxillary and labial segments, respectively. Second, two of the proteins, Sex combs reduced and Deformed, have different dorsal and ventral patterns of accumulation. Dorsally, these proteins are expressed in segmental domains while, within the ventral region, a parasegmental register is observed. The boundary where this change in pattern occurs coincides with the junction between the ventral neurogenic region and the dorsal epidermis. After contraction of the germ band, when the nerve cord has completely separated from the epidermis, the parasegmental pattern is observed only within the ventral nerve cord while a segmental register is maintained throughout the epidermis.  相似文献   

10.
Mouse Td ho (Tattered-Hokkaido) was described as being allelic with Td in our previous study. Both allelic genes, which are located at the same position on the centromere of the X Chromosome (Chr), generate similar phenotypes such as male embryonic lethality, and in heterozygous females, hyperkeratotic skin, skeletal abnormalities, and growth retardation. The emopamil binding protein gene (Ebp) emerged as a candidate for mouse Td ho mutation, since the Td gene was recently determined to result from a point mutation of Ebp. In this study, Ebp cDNA of Td ho was demonstrated to possess double point mutations that cause two amino acid changes from Leu to Pro at position 132 and from Ser to Cys at 133 in EBP protein. EBP participates in cholesterol biosynthesis, and cholest-8(9)-en-3β-ol was found to be increased in the plasma of Td ho adult females but not in that of normal mice. From these results, a loss of function was expected for the EBP protein encoded by Td ho . Both the phenotypes and genes responsible for Td ho as well as Td are quite similar to those of human X-linked chondrodysplasia punctata (CDPX2). Received: 9 January 2001 / Accepted: 1 April 2001  相似文献   

11.
The Trypanosoma brucei gene encoding the 60 S ribosomal protein L27a (L29) homologue has been cloned and characterised. The complete open reading frame encodes a small basic protein of 145 amino acids with a predicted molecular weight of 15,950. The L27a amino acid sequence shares 45-58% identity with other L27a (L29) homologues. Southern blot hybridisation suggests that the gene is present in multiple copies. Northern blot analysis of RNA from three T. brucei life cycle stages show that mRNA levels are two-fold higher in procyclic than in early or late bloodstream stages. This infers that this highly conserved ribosomal protein may play an important role in translational regulation through the life cycle of trypanosomes.  相似文献   

12.
Optic morphology (Om) mutations in Drosophila ananassae map to at least 22 loci, which are scattered throughout the genome. Om mutations are all semidominant, neomorphic, nonpleiotropic, and associated with the insertion of a retrotransposon, tom. We have found that the Om(2D) gene encodes a novel protein containing histidine/proline repeats, and is ubiquitously expressed during embryogenesis. The Om(2D) RNA is not detected in wild-type eye imaginal discs, but is abundantly found in the center of the eye discs of Om(2D) mutants, where excessive cell death occurs. D. melanogaster flies transformed with the Om(2D) cDNA under control of the hsp70 promoter display abnormal eye morphology when heat-shocked at the third larval instar stage. These results suggest that the Om(2D) gene is not normally expressed in the eye imaginal discs, but its ectopic expression, induced by the tom element, in the eye disc of third instar larvae results in defects in adult eye morphology.  相似文献   

13.
Using restriction enzymes and polymerase chain reaction, three mutated forms of L7/L12 proteins with deleted 38-46, 44-52 and 38-52 residues were obtained. These mutant proteins were isolated in a preparative scale and were shown to bind to ribosomes and to affect ribosomal function.  相似文献   

14.
15.
The heterogeneous group of disorders known as oculocutaneous albinism (OCA) shares cutaneous and ocular hypopigmentation associated with common developmental abnormalities of the eye. Mutations of at least 11 loci produce this phenotype. The majority of affected individuals develop some cutaneous melanin; this is predominantly seen as yellow/blond hair, whereas fewer have brown hair. The OCA phenotype is dependent on the constitutional pigmentation background of the family, with more OCA pigmentation found in families with darker constitutional pigmentation, which indicates that other genes may modify the OCA phenotype. Sequence variation in the melanocortin-1 receptor (MC1R) gene is associated with red hair in the normal population, but red hair is unusual in OCA. We identified eight probands with OCA who had red hair at birth. Mutations in the P gene were responsible for classic phenotype of oculocutaneous albinism type 2 (OCA2) in all eight, and mutations in the MC1R gene were responsible for the red (rather than yellow/blond) hair in the six of eight who continued to have red hair after birth. This is the first demonstration of a gene modifying the OCA phenotype in humans.  相似文献   

16.
17.
15N T(1), T(2) and (1)H-(15)N NOE were measured for the thermophilic Fe(7)S(8) protein from Bacillus schlegelii and for the Fe(4)S(4) HiPIP protein from Chromatium vinosum, which is a mesophilic protein. The investigation was performed at 276, 300, and 330 K at 11.7 T for the former, whereas only the 298 K data at 14.1 T for the latter were acquired. The data were analyzed with the model-free protocol after correcting the measured parameters for the effect of paramagnetism, because both proteins are paramagnetic. Both thermophilic and mesophilic proteins are quite rigid, with an average value of the generalized order parameter S2at room temperature of 0.92 and 0.94 for Fe(7)S(8) and Fe(4)S(4) proteins, respectively. The analyzed nitrogens for the Fe(7)S(8) protein showed a significant decrease in S2with increasing temperature, and at the highest temperature >70% of the residues had an internal correlation time. This research shows that subnanosecond rigidity is not related to thermostability and provides an estimate of the effect of increasing temperature on this time scale.  相似文献   

18.
19.
20.
DNA polymerase alpha (pol-alpha) is a heterotetrameric enzyme (p180-p68-p58-p48 in mouse) that is essential for the initiation of chain elongation during DNA replication. The catalytic (p180) and p68 subunits of pol-alpha are phosphorylated by Cdk-cyclin complexes, with p68 being hyperphosphorylated by cyclin-dependent kinases in G(2) phase of the cell cycle. The activity of Cdk2-cyclin A increases during late S phase and peaks in G(2) phase. We have now examined the role of p68 in the interaction between the catalytic subunit of pol-alpha and hyperphosphorylated retinoblastoma protein (ppRb) and in the stimulation of the polymerase activity of pol-alpha by ppRb. With the use of recombinant proteins, we found that nonphosphorylated p68 inhibited the stimulation of pol-alpha activity by ppRb, suggesting that p68 might impede the association of ppRb with p180. Phosphorylation of p68 by Cdk2-cyclin A greatly reduced its inhibitory effect. Immunofluorescence analysis also revealed that ppRb localized at sites of DNA replication specifically in late S phase. These results suggest that Cdk-cyclin A can phosphorylate pol-alpha which may result in a conformational change in pol-alpha facilitating its interaction with and activation by ppRb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号