首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of the isolated catalytic domain B of xylanase C (XynC-B) from Fibrobacter succinogenes with N-bromosuccinimide (NBS) resulted in the modification of five of the seven Trp residues present in the enzyme. Hydrolytic activity of the enzyme was rapidly lost upon initiation of oxidation as a molar ratio of about two NBS molecules per molar equivalent of protein was sufficient to cause 50% inhibition of enzyme activity, and the addition of five molar equivalents of NBS resulted in less than 10% activity. Pre-incubation of XynC-B with the competitive inhibitor D-xylose resulted in the apparent protection of two Trp residues from oxidation. Xylose protection of the enzyme also resulted in a maintenance of activity, with 60% activity still evident after addition of 8-9 molar equivalents of NBS. This protection from inactivation was enhanced by the inclusion of xylohexaose in reaction mixtures. Under these conditions, however, a further Trp residue was protected from NBS oxidation. The three protected Trp residues were identified as Trp135, Trp161 and Trp202 by differential labelling and peptide mapping of NBS-oxidized preparations of the xylanase employing a combination of electrospray mass spectroscopic analysis and N-terminal sequencing. By analogy to the known structures of the family 11 xylanases, the fully conserved Trp202 residue is located on the only alpha-helix present in the enzymes, at the interface between it and the back of the beta-sheet which forms the active site cleft. Trp135 represents a highly conserved aromatic residue in family 11, but it is replaced with Thr in domain A of F. succinogenes xylanase C. To investigate the role of Trp135 in conferring the different activity profile of domain B relative to domain A, the Trp135Thr and Trp135Ala derivatives of domain B were prepared by site-directed mutagenesis. However, the kinetic parameters of the two domain B derivatives were not significantly different compared to the wild-type enzyme as reflected by K(M) and k(cat) values and product distribution profiles. Similar results were obtained with the Trp161Ala derivative of domain B, indicating that these two residues do not directly participate in the binding of substrate but likely form the foundation for binding subsite 2.  相似文献   

2.
Glutathione S-transferase P (GST-P) exists as a homodimeric form and has two tryptophan residues, Trp28 and Trp38, in each subunit. In order to elucidate the role of the two tryptophan residues in catalytic function, we examined intrinsic fluorescence of tryptophan residues and effect of chemical modification by N-bromosuccinimide (NBS). The quenching of intrinsic fluorescence was observed by the addition of S-hexylglutathione, a substrate analogue, and the enzymatic activity was totally lost when single tryptophan residue was oxidized by NBS. To identify which tryptophan residue is involved in the catalytic function, each tryptophan was changed to histidine by site-directed mutagenesis. Trp28His GST-P mutant enzyme showed a comparable enzymatic activity with that of the wild type one. Trp38His mutant neither was bound to S-hexylglutathione-linked Sepharose nor exhibited any GST activity. These findings indicate that Trp38 is important for the catalytic function and substrate binding of GST-P.  相似文献   

3.
When dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B, MB 1428, is treated with approximately a 5 mol ratio of N-bromosuccinimide (NBS) to enzyme at pH 7.2 and assayed at the same pH, there is a 40% loss of activity due to the modification of 1 histidine residue and possibly 1 methionine residue before oxidation of tryptophan occurs. The initial modification is accompanied by a shift of the pH for maximal enzymatic activity from pH 7.2 to pH 5.5 Upon further treatment with N-bromosuccinimide, the activity is gradually reduced from 60 to 0% as tryptophan residues become oxidized. An NBS to enzyme mole ratio of approximately 20 results in 90% inactivation of the enzyme. When the enzyme is titrated with NBS in 6 M guanidine HCl, 5 mol of tryptophan react per mol of enzyme, a result in agreement with the total tryptophan content as determined by magnetic circular dichroism. The 40% NBS-inactivated sample posses full binding capacity for methotrexate and reduced triphosphopyridine nucleotide, and the Km values for dihydrofolate and TPNH are the same as for the native enzyme. After 90% inactivation, only half of the enzyme molecules bind methotrexate, and the dissociation constant for methotrexate is 40 nM as compared to 4 nM for native enzyme in solutions of 0.1 M ionic strength, pH 7.2 Also, TPNH is not bound as tightly to the modified enzyme-methotrexate complex as to the unmodified enzyme-methotrexate complex. Circular dichroism studies indicate the 90% NBS-inactivated enzyme has the same alpha helix content as the native enzyme but less beta structure, while the 40% inactivated enzyme is essentially the same as the native enzyme. Protection experiments were complicated by the fact that NBS reacts with the substrates and cofactors of the enzyme. Although protection of specific residues was not determined, it was clear that TPNH was partially protected from NBS reaction when bound to the enzyme, and the enzyme, and the enzyme was not inactivated by NBS until the TPNH had reacted.  相似文献   

4.
G K Kumar  H Beegen  H G Wood 《Biochemistry》1988,27(16):5972-5978
Transcarboxylase from Propionibacterium shermanii is a multisubunit enzyme. It consists of one central hexameric subunit to which six outer dimeric subunits are attached through twelve biotinyl subunits. Both the central and the outer subunits are multi-tryptophan (Trp) proteins, and each contains 5 Trps per monomer. The roles of the Trps during catalysis and assembly of the enzyme have been studied by using N-bromosuccinimide (NBS) oxidation as a probe. Modification of approximately 10 Trps of the total 90 Trps of the intact enzyme results in loss of activity. Both the substrates, viz., methylmalonyl-CoA and pyruvate, afford protection (approximately 50%) against inactivation caused by NBS. Analyses of tryptic peptide maps and intrinsic fluorescence studies have indicated that modification of 10 Trps of the whole enzyme does not cause extensive conformational changes. Therefore, the Trps appear to be essential for catalytic activity. NBS modification of the individual subunits at pH 6.5 has demonstrated differential reactivity of their Trps. Modification of the exposed/reactive Trps of either one of the subunits significantly affects the subunit assembly with the complementary unmodified subunits to form active enzyme. It is proposed that Trps are involved at the subunit-binding domains of either the central or the outer subunit of transcarboxylase, in addition to those critical for catalysis.  相似文献   

5.
Subtilisin E, a serine protease from Bacillus subtilis, requires an N-terminal propeptide for its correct folding. The propeptide is autocleaved and digested by the subtilisin domain upon proper folding. Here we investigated the individual roles of the three Trp residues within the subtilisin domain (Trp106, Trp113 and Trp241) on propeptide processing, enzymatic activity and stability of subtilisin. When the propeptide processing was examined by SDS-PAGE after refolding by rapid dilution, the mutation at either position Trp106 or Trp113 was found to significantly delay the propeptide processing, while the mutation at Trp241 had no effect. Far-UV circular dichroism (CD) spectra of the mutants revealed that the mutations at the three positions did not affect appreciably the alpha-helix content of subtilisin. Secondary structure thermal unfolding monitored by CD spectroscopy revealed that none of the tryptophan residues had any significant effect on the stability of mature subtilisin. The enzymatic activity measurements showed that only Trp106 plays a major role in the enzymatic activity of subtilisin E. These results demonstrate that both Trp106 and Trp113 play a specific role in propeptide processing and enzymatic activity, while Trp241 plays no considerable role on any of these activities.  相似文献   

6.
The effect of chemical modification of various amino acid residues on the enzymatic activity of glucoamylase from Asp. awamori was studied. Modification of the carboxyl groups by taurine in the presence of water-soluble carbodiimide results in complete inactivation of the enzyme. The inactivation process includes two steps, namely non-specific modification and modification of the active center carboxyls. The rate constants of inactivation at both steps were measured in the presence and absence of the substrate, i. e. maltose. It was shown that the enzyme is inactivated by N-bromosuccinimide. Based on the data on the protection of the enzyme active center by the substrates (maltooligosaccharides of various lengths), it was concluded that the essential tryptophane residue(s) is localized in the fourth subsite. Ethoxycarbonylation, nitration and acetylation of glucoamylase do not change the catalytic activity of the enzyme. The protein was shown to contain no SH-groups.  相似文献   

7.
One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.  相似文献   

8.
Selective modification of the two Trp residues of GTP:AMP phosphotransferase from beef heart mitochondria (Mr 26 000; MgGTP + AMP in equilibrium MgGDP + ADP) has been attained by treatment of the enzyme with N-bromosuccinimide at pH 4.0. Almost complete loss of activity is observed when one Trp is oxidized. Fluorescence emission spectra (lambda exc 295 nm) were recorded over the pH range 1.9-12.2. Quenching constants, K, with acrylamide were 4.9, 3.4, 3.1, 2.4, 9.2 and 9.4 M-1 at respective pH values of 11.1, 7.5, 5.5, 4.0, 1.9 and 7.5 with 6 M guanidine/HCl. Over the pH range 8.0-5.5 the fluorescence peak has a constant height with maximum at 333-334 nm, which can be segregated by acrylamide quenching into a peak with maximum at 338 nm and another with maximum at 330 nm. Dropping the pH from 5.5 to 4.0 results in the fluorescence at 338 nm decreasing to 335 nm (indicative of less exposure of the Trp) while that at 330 nm remains constant. Thus the limitation of reactivity to N-bromosuccinimide to pH 4.0 or lower cannot be accounted for by increased exposure of the Trp residues but rather must be explained by a change in the microenvironment of each Trp. As shown by K values above, at pH 2.0 Trp residues are exposed to the solvent, as in the case of treatment with 6 M guanidine hydrochloride. In raising the pH from 8.0 to 12.0 a number of changes occur: (a) the lambda max of emission shifts from 333-334 nm to 343 nm; (b) residue(s) become(s) more available to acrylamide quenching; (c) fluorescence decreases and enzymatic activity increases, both with a midpoint at about 10.6; (d) absorption difference spectra show a maximum at 295 nm typical of Tyr ionization. These data are consistent with conformational change as the pH becomes more alkaline making the Trp residue(s) more exposed to the solvent and/or to non-radiative energy transfer to tyrosinate.  相似文献   

9.
UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases), which initiate mucin-type O-glycan biosynthesis, have broad acceptor substrate specificities, and it is still unclear how they recognize peptides with different sequences. To increase our understanding of the catalytic mechanism of GalNAc-T1, one of the most ubiquitous isozymes, we studied the effect of substituting six conserved aromatic residues in the highly conserved Gal/GalNAc-glycosyltransferase motif with leucine on the catalytic properties of the enzyme. Our results indicate that substitutions of Trp302 and Phe325 have little impact on enzyme function and that substitutions of Phe303 and Tyr309 could be made with only limited impact on the interaction(s) with donor and/or acceptor substrates. By contrast, Trp328 and Trp316 are essential residues for enzyme functions, as substitution with leucine, at either site, led to complete inactivation of the enzymes. The roles of these tryptophan residues were further analyzed by evaluating the impact of substitutions with additional amino acids. All evaluated substitutions at Trp328 resulted in enzymes that were completely inactive, suggesting that the invariant Trp328 is essential for enzymatic activity. Trp316 mutant enzymes with nonaromatic replacements were again completely inactive, whereas two mutant enzymes containing a different aromatic amino acid, at position 316, showed low catalytic activity. Somewhat surprisingly, a kinetic analysis revealed that these two amino acid substitutions had a moderate impact on the enzyme's affinity for the donor substrate. By contrast, the drastically reduced affinity of the Trp316 mutant enzymes for the acceptor substrates suggests that Trp316 is important for this interaction.  相似文献   

10.
Three Trp variants of lysyl-tRNA synthetase from Bacillus stearothermophilus, in which either one or both of the two Trp residues within the enzyme (Trp314 and Trp332) were substituted by a Phe residue, were produced by site-directed mutagenesis without appreciable loss of catalytic activity. The following two phenomena were observed with W332F and with the wild-type enzyme, but not with W314F: (1) the addition of L-lysine alone decreased the protein fluorescence of the enzyme, but the addition of ATP alone did not; (2) the subsequent addition of ATP after the addition of excess L-lysine restored the fluorescence to its original level. Fluorometry under various conditions and UV-absorption spectroscopy revealed that Trp314, which was about 20A away from the lysine binding site and was shielded in a non-polar environment, was solely responsible for the fluorescence changes of the enzyme in the L-lysine activation reaction. Furthermore, the microenvironmental conditions around the residue were made more polar upon the binding of L-lysine, though its contact with the solvent was still restricted. It was suggested that Trp314 was located in a less polar environment than was Trp332, after comparison of the wavelengths at the peaks of fluorescence emission and of the relative fluorescence quantum yields. Trp332 was thought, based on the fluorescence quenching by some perturbants and the chemical modification with N-bromosuccinimide, to be on the surface of the enzyme, whereas Trp314 was buried inside. The UV absorption difference spectra induced by the L-lysine binding indicated that the state of Trp314, including its electrostatic environment, changed during the process, but Trp332 did not change. The increased fluorescence from Trp314 at acidic pH compared with that at neutral pH suggests that carboxylate(s) are in close proximity to the Trp314 residue.  相似文献   

11.
The heme enzyme lignin peroxidase contains a unique Cbeta-hydroxylated tryptophan residue (Trp171) on the surface of the enzyme. Mutagenetic substitution of Trp171 abolishes completely the veratryl alcohol oxidation activity of the enzyme. This led us to surmise that Trp171 may be involved in electron transfer from natural substrates to the heme cofactor. Here we present evidence for the formation of a transient radical on Trp171 using spin-trapping in combination with peptide mapping. The spin-trap methyl nitroso propane forms a covalent adduct with Trp171 in the presence of hydrogen peroxide which can be detected by its characteristic visible absorbance spectrum. A very similar chromophore can be obtained in a small molecular model system from N-acetyl tryptophanamide, the spin-trap, and a single-electron abstracting system. The precise site the spin-trap is attached to could be identified in a crystal structure of spin-trap/hydrogen peroxide-treated enzyme as the C6 atom of the indole ring of Trp171. These results indicate that Trp171 is redox-active and that it forms an indole radical by transfer of an electron to the heme of compound I and/or II. Apart from cytochrome c peroxidase and DNA photolyase, lignin peroxidase appears to be the third enzyme only which utilizes a tryptophan residue as an integral part of its redox catalysis.  相似文献   

12.
A comparison of the amino acid sequences of the glucosyltransferases (GTFs) of mutans streptococci with those from the alpha-amylase family of enzymes revealed a number of conserved amino acid positions which have been implicated as essential in catalysis. Utilizing a site-directed mutagenesis approach with the GTF-I enzyme of Streptococcus mutans GS-5, we identified three of these conserved amino acid positions, Asp413, Trp491, and His561, as being important in enzymatic activity. Mutagenesis of Asp413 to Thr resulted in a GTF which expressed only about 12% of the wild-type activity. In contrast, mutagenesis of Asp411 did not inhibit enzyme activity. In addition, the D413T mutant was less stable than was the parental enzyme when expressed in Escherichia coli. Moreover, conversion of Trp491 or His561 to either Gly or Ala resulted in enzymes devoid of GTF activity, indicating the essential nature of these two amino acids for activity. Furthermore, mutagenesis of the four Tyr residues present at positions 169 to 172 which are part of a subdomain with homology to the direct repeating sequences present in the glucan-binding domain of the GTFs had little overall effect on enzymatic activity, although the glucan products appeared to be less adhesive. These results are discussed relative to the mechanisms of catalysis proposed for the GTFs and related enzymes.  相似文献   

13.
The xylanase XynC of Fibrobacter succinogenes S85 was recently shown to contain three distinct domains, A, B, and C (F. W. Paradis, H. Zhu, P. J. Krell, J. P. Phillips, and C. W. Forsberg, J. Bacteriol. 175:7666-7672, 1993). Domains A and B each bear an active site capable of hydrolyzing xylan, while domain C has no enzymatic activity. Two truncated proteins, each containing a single catalytic domain, named XynC-A and XynC-B were purified to homogeneity. The catalytic domains A and B had similar pH and temperature parameters of 6.0 and 50 degrees C for maximum hydrolytic activity and extensively degraded birch wood xylan to xylose and xylobiose. The Km and Vmax values, respectively, were 2.0 mg ml-1 and 6.1 U mg-1 for the intact enzyme, 1.83 mg ml-1 and 689 U mg-1 for domain A, and 2.38 mg ml-1 and 91.8 U mg-1 for domain B. Although domain A had a higher specific activity than domain B, domain B exhibited a broader substrate specificity and hydrolyzed rye arabinoxylan to a greater extent than domain A. Furthermore, domain B, but not domain A, was able to release xylose at the initial stage of the hydrolysis. Both catalytic domains cleaved xylotriose, xylotetraose, and xylopentaose but had no activity on xylobiose. Bond cleavage frequencies obtained from hydrolysis of xylo-alditol substrates suggest that while both domains have a strong preference for internal linkages of the xylan backbone, domain B has fewer subsites for substrate binding than domain A and cleaves arabinoxylan more efficiently. Chemical modification with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide methiodide and N-bromosuccinimide inactivated both XynC-A and XynC-B in the absence of xylan, indicating that carboxyl groups and tryptophan residues in the catalytic site of each domain have essential roles.  相似文献   

14.
Previous results indicate that a tryptophan residue(s) may interact with the sugar substrate and Cu(II) atom of galactose oxidase (Ettinger, M. J., and Kosman, D. J. (1974), Biochemistry 13, 1248). We now show that N-bromosuccinimide (NBS) reduces enzymatic activity to 2% as two tryptophans are oxidized; only four residues are easily oxidized in the holoenzyme. An enzymatic activity vs. number of residues oxidized profile suggests that this inactivation is probably associated with only one of the first 2 residues oxidized. There is no evidence for chain cleavage or modification of amino acids other than tryptophan. While substrate protection is not afforded by the sugar substrate, the activity-related tryptophan is placed within the active-site locus by spectral evidence. NBS oxidation of two tryptophans results in a marked diminution of the large copper optical-activity transition at 314 nm. Under some reaction conditions, a doubling of ellipticity in the 600-nm region of copper CD is also observed. The effects of the NBS oxidation on the CD spectra of galactose oxidase permit the assignment of the 314-nm CD band to a charge-transfer transition and the 229-nm extremum to a specific tryptophan contribution. The AZZ parameter from electron spin resonance spectra is also markedly reduced by the NBS oxidation. Moreover, while cyanide binds to the native enzyme without reducing the Cu(II) atom, cyanide rapidly reduces the Cu(II) atom to Cu(I) in the NBS-oxidized enzyme. These CD and ESR results are taken to suggest that one aspect of the inactivation by NBS oxidation may be a conversion of the pseudosquare planar copper complex in the native enzyme to a more distorted, towards tetrahedral, complex in the inactivated enzyme. Since the inactivation can be accomplished without affecting binding of the sugar substrate, tryptophan oxidation must affect catalysis per se.  相似文献   

15.
The tryptophan residues of the cellulase (EC 3.2.1.4; 1,4-beta-D-glucan 4-glucanohydrolase) from Schizophyllum commune were oxidized by N-bromosuccinimide in both the presence and absence of substrates and inhibitors of the enzyme. In the absence of protective ligands, eight of the twelve tryptophan residues in the cellulase were susceptible to modification with concomitant inactivation of the enzyme. The binding of the substrates, CM-cellulose, methyl cellulose, cellohexaose or lichenan and the competitive inhibitor, cellobiose, protected one tryptophan residue from oxidation but did not prevent the inactivation. Characterization of the oxidized enzyme derivatives by ultraviolet difference absorption and by fluorescence spectroscopy indicated that two tryptophan residues are essential in the mechanism of cellulase catalysis. One residue appears to be directly involved in the binding of substrate, while the second residue is proposed to constitute an integral part of a catalytically sound active centre.  相似文献   

16.
The effect of oxidation of the methionine residues of Escherichia coli-derived recombinant human stem cell factor (huSCF) to methionine sulfoxide on the structure and activity of SCF was examined. Oxidation was performed using hydrogen peroxide under acidic conditions (pH 5.0). The kinetics of oxidation of the individual methionine residues was determined by quantitation of oxidized and unoxidized methionine-containing peptides, using RP-HPLC of Asp-N endoproteinase digests. The initial oxidation rates for Met159, Met-1, Met27, Met36, and Met48 were 0.11 min-1, 0.098 min-1, 0.033 min-1, 0.0063 min-1, and 0.00035 min-1, respectively, when SCF was incubated in 0.5% H2O2 at room temperature. Although oxidation of these methionines does not affect the secondary structure of SCF, the oxidation of Met36 and Met48 affects the local structure as indicated by CD and fluorescence spectroscopy. The 295-nm Trp peak in the near-UV CD is decreased upon oxidation of Met36, and lost completely following the oxidation of Met48, indicating that the Trp44 environment is becoming significantly less rigid than it is in native SCF. Consistent with this result, the fluorescence spectra revealed that Trp44 becomes more solvent exposed as the methionines are oxidized, with the hydrophobicity of the Trp44 environment decreasing significantly. The oxidations of Met36 and Met48 decrease biological activity by 40% and 60%, respectively, while increasing the dissociation rate constant of SCF dimer by two- and threefold. These results imply that the oxidation of Met36 and Met48 affects SCF dimerization and tertiary structure, and decreases biological activity.  相似文献   

17.
Versatile peroxidases (VP), a recently described family of ligninolytic peroxidases, show a hybrid molecular architecture combining different oxidation sites connected to the heme cofactor. High-resolution crystal structures as well as homology models of VP isoenzymes from the fungus Pleurotus eryngii revealed three possibilities for long-range electron transfer for the oxidation of high redox potential aromatic compounds. The possible pathways would start either at Trp164 or His232 of isoenzyme VPL, and at His82 or Trp170 of isoenzyme VPS1. These residues are exposed, and less than 11 A apart from the heme. With the purpose of investigating their functionality, two single mutations (W164S and H232F) and one double mutation (W164S/P76H) were introduced in VPL that: (i) removed the two pathways in this isoenzyme; and (ii) incorporated the absent putative pathway. Analysis of the variants showed that Trp164 is required for oxidation of two high redox potential model substrates (veratryl alcohol and Reactive Black 5), whereas the two other pathways (starting at His232 and His82) are not involved in long-range electron transfer (LRET). None of the mutations affected Mn2+ oxidation, which would take place at the opposite side of the enzyme. Substitution of Trp164 by His also resulted in an inactive variant, indicating that an indole side-chain is required for activity. It is proposed that substrate oxidation occurs via a protein-based radical. For the first time in a ligninolytic peroxidase such an intermediate species could be detected by low-temperature electron paramagnetic resonance of H2O2-activated VP, and was found to exist at Trp164 as a neutral radical. The H2O2-activated VP was self-reduced in the absence of reducing substrates. Trp164 is also involved in this reaction, which in the W164S variant was blocked at the level of compound II. When analyzing VP crystal structures close to atomic resolution, no hydroxylation of the Trp164 Cbeta atom was observed (even after addition of several equivalents of H2O2). This is in contrast to lignin peroxidase Trp171. Analysis of the crystal structures of both peroxidases showed differences in the environment of the protein radical-forming residue that could affect its reactivity. These variations would also explain differences found for the oxidation of some high redox potential aromatic substrates.  相似文献   

18.
An assay for GDP-fucose:polypeptide fucosyltransferase has beenestablished. The enzyme catalyzes the reaction that attachesfucose through an O-glycosidic linkage to a conserved serineor threonine residue in EGF domains. The assay uses recombinanthuman factor VII EGF-1 domain as acceptor substrate and GDP-fucoseas donor substrate. Synthetic peptides with sequences takenfrom five proteins previously shown to contain O-linked fucose(Harris and Spellman, 1993; Glycobiology 3, 219–224) didnot serve as efficient acceptor substrates. These syntheticpeptides did not comprise complete EGF domains and did not containall six cysteine residues that define the EGF structure. Therefore,the enzyme appears to require more than just a consensus primarysequence and likely requires that the EGF domain disulfide bondsbe properly formed. The enzymatic reaction showed linear dependencyof its activity on time, amount of enzyme, and substrates. Althoughthe enzyme did not exhibit an absolute requirement for Mn2+enzymatic activity did increase ten fold in the presence of50 mM MnCl2. The in vitro glycosylation reaction resulted incomplete conversion of the acceptor substrate to glycosylatedproduct, and characterization of the purified product by electrospraymass spectrometry revealed that one fucose was added onto thepolypeptide. Most of the enzymatic activity was found to bein the soluble fraction of CHO cell homogenates. However, whenenzyme was prepared from rat liver in the presence of proteaseinhibitors, 37% of the activity was recovered by Triton X-100extraction of the membrane particles after extensive aqueouswashes. The result suggests that the enzyme is probably a membraneprotein and, by analogy with other glycosyl transferases, probablyhas a ‘stem’ region that is very susceptible toproteolysis. fucosyltransferase O-linked fucose EGF domain glycosylation  相似文献   

19.
A fructanase, produced by a Kluyveromyces marxianus strain isolated during the fermentation step of the elaboration process of "Mezcal de Guerrero" was purified and biochemically characterized. The active protein was a glycosylated dimer with a molecular weight of approximately 250 kDa. The specific enzymatic activity of the protein was determined for different substrates: sucrose, inulin, Agave tequilana fructan, levan and Actilight? and compared with the activity of Fructozyme?. The hydrolysis profile of the different substrates analyzed by HPAEC-PAD showed that the enzyme has different affinities over the substrates tested with a sucrose/inulin enzymatic activity ratio (S/I) of 125. For the hydrolysis of Agave tequilana fructans, the enzyme also showed a higher enzymatic activity and specificity than Fructozyme?, which is important for its potential application in the tequila industry.  相似文献   

20.
Adenosine deaminase from bovine cerebral hemisphere (white and gray matter) and spleen was treated with N-bromosuccinimide, a reagent known to oxidize selectively tryptophan residues in proteins. Spectrally observable tryptophan modification was accompanied by enzyme inactivation. Tsow graphics revealed that two Trps are essential for the activity of enzyme from both tissues. Enzyme inhibitors and substrate analogues, derivatives of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and adenosine, were able to protect Trp against modification, and this effect correlated in general with the enzyme activity protection. In the presence of adenosine deaza analogues (the noninhibitor tubercidin among them) only two Trps were modified in the fully inactivated enzyme. In the presence of EHNA and its deaza analogues, full inactivation of the enzyme was accompanied by the modification of four Trps. The obtained data confirm the previous hypothesis about the presence on the enzyme of different binding sites for adenosine and EHNA derivatives that are responsible for the different effects on the enzyme conformation elicited by the corresponding derivatives. Moreover, these data allow us to suggest that Trp residues, still unidentified by X-ray analysis, are essential for the functioning of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号