首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas tolaasii strain PT814 produces extracellular toxins, tolaasins, and a volatile toxin, tovsin, that are responsible for the induction of brown blotch and rotting, respectively, in a cultivated mushroom,Pleurotus ostreatus. Insertions of single transposon mini-Tn5Km 1 into the chromosome ofP. tolaasii strain PT814 generated mutants that are pleiotropically defective in tolaasin and protease production, and altered in colony morphology. The mutants, however, produce tovsin at the level of wild-type. Variants phenotypically similar to the pleiotropic mutants ofP. tolaasii strain PT814 spontaneously occurred inP. tolaasii strain S8501 at 22–30°C in vitro. The occurrence of variants was significantly reduced in the presence of extracts ofP ostreatus or at a temperature of 15–20°C. ThertpA gene (rtpA=regulator gene of tolaasin production and other pleiotropic traits) isolated from aP. tolaasii strain PT814 gene library restored the wild-type phenotype in both the mini-Tn5km 1 insertion and spontaneous mutants. mini-Tn5km 1 insertions were also located in the allele ofrtpA. Nucleotide sequencing of thertpA DNA revealed an open reading frame of 2,751 bp predicted to encode a protein consisting of 917 amino acid residues with a molecular mass of 100.6 kDa and displaying the conserved amino acid sequence of both sensor, and receiver domains of “bacterial two-component regulators”. The data suggest that the machinery responding to environmental stimuli is essential for the pathogenic interaction ofP. tolaasii with the mushroom.  相似文献   

2.
Hitoshi Murata 《Mycoscience》1999,40(4):353-358
Pseudomonas tolaasii strain PT 814 causes brown blotch disease in cultivated mushrooms. A pleiotropic avirulent mutant was isolated by mini-Tn5km 1 insertion mutagenesis. The insertion was localized in an open reading frame (ORF) predicted to encodesn-glycerol-3-phosphate dehydrogenase (glpD). ORFs that should encode its regulator, kinase, and facilitator were also identified as theglp gene cluster in the bacterium. The data suggest that theglp system may contribute to the ecology of this pathogen.  相似文献   

3.
A Gram-positive bacterium was isolated from a rottingPleurotus ostreatus fruiting body that markedly reduced the level of extracellular toxins (i.e., tolaasins) produced byPseudomonas tolaasii, the most destructive pathogen of cultivated mushrooms. The isolated bacterium is saprophytic but not parasitic nor pathogenic toP. ostreatus. A low ratio, ca. 10−3 cells of the isolated bacterium for oneP. tolaasii cells, was sufficient for detoxification in vitro. Inoculation of the isolated bacterium prevents the development of bacterial disease inP. ostreatus andAgaricus bisporus. The suppression of the disease development, however requires the initial cell density equivalent to ca. 10−1 cells of the isolated bacterium for one cells of the pathogen. The effects is ascribed to the inactivation of tolaasin by the live, suppressive bacterial cells, and not to metabolites secreted from the organism into culture media. Examination by conventional bacteriological tests and with testing kits, i.e., MicroStationTMSystem Release 3.5 (Biolog Inc., Hayward, CA), ATB Expression (bioMerieux Inc. Japan) and VITEK (bioMerieux Inc. Japan), failed to assign the organism to any defined bacterial genus. The suppressive bacterium may be useful in future for the development of biocontrol system and/or the construction of genetically modified edible fungi resistant to the disease caused byP. tolaasii.  相似文献   

4.
Selection-induced mutations, sometimes called directed, adaptive, or Cairnsian mutations, are spontaneous mutations that occur as specific responses to environmental challenges, usually during periods of prolonged stress, and that occur more often when they are selectively advantageous than when they are selectively neutral. In this study I show that lesions in uvrA, uvrB, uvrC, or uvrD increase the mutation rate from trpA46 to trpA + by 102– to 104–fold during tryptophan starvation, but those same lesions do not affect random mutation rates in growing cells when tryptophan is present. The increased selection-induced mutation rates remain specific to the gene that is under selection in that no increase in the mutation rate from trpA46 to trpA + is detected during proline starvation.Evidence is presented showing that proline starvation produces a state of cellular stress which results in a burst of mutations from trpA46 to trpA + when proline-starved cells are plated onto medium lacking tryptophan but containing proline.These results are consistent with the hypermutable state model for selection-induced mutagenesis.  相似文献   

5.
Glutamate excretion due to amino acid starvation was investigated in “stringent” and “relaxed” strains ofEscherichia coli. The observed excretion process isrelA-dependent, carrier-mediated, and glutamate-specific. After induction, excretion was detected within less than 2 min and continued for more than 5h with a rate of 7–10 nmol (mg dry weight)−1 min−1. Using carbonyl cyanidem-chlorophenylhydrazone or polymyxin B nonapeptide, together with valinomycin, it was shown that glutamate excretion is driven by the membrane potential.  相似文献   

6.
The chlorinated insecticide γ-hexachlorocyclohexane (γ-HCH) is sequentially metabolized by the products of linA, linB, linC, linD, linE, and linF genes to β-ketoadipate, which is subsequently mineralized. Two or more copies of these genes are present in the bacterium Pseudomonas aeruginosa ITRC-5 that was isolated earlier by selective enrichment on technical-HCH. At least one copy of linA, linB, linC, linD, and possibly linE is lost from ITRC-5 upon its growth on γ-HCH. All the lin genes, however, are lost when the bacterium was grown in Luria–Bertani (LB) medium. The loss of lin genes is accompanied with the loss/rearrangement of insertion sequence IS6100 genes. Concomitant to the loss of lin genes, the degradation of HCH-isomers by “γ-HCH grown cells” is slower, when compared with “technical-HCH grown cells”, and is completely lost by “LB-grown cells”. The selective loss of lin genes during different growth conditions has not been reported before and is expected to help in understanding the dynamism of degradative genes.  相似文献   

7.
The epistatic interaction of alleles at the VRN-H1 and VRN-H2 loci determines vernalization sensitivity in barley. To validate the current molecular model for the two-locus epistasis, we crossed homozygous vernalization-insensitive plants harboring a predicted “winter type” allele at either VRN-H1 (Dicktoo) or VRN-H2 (Oregon Wolfe Barley Dominant), or at both VRN-H (Calicuchima-sib) loci and measured the flowering time of unvernalized F2 progeny under long-day photoperiod. We assessed whether the spring growth habit of Calicuchima-sib is an exception to the two-locus epistatic model or contains novel “spring” alleles at VRN-H1 (HvBM5A) and/or VRN-H2 (ZCCT-H) by determining allele sequence variants at these loci and their effects relative to growth habit. We found that (a) progeny with predicted “winter type” alleles at both VRN-H1 and VRN-H2 alleles exhibited an extremely delayed flowering (i.e. vernalization-sensitive) phenotype in two out of the three F2 populations, (b) sequence flanking the vernalization critical region of HvBM5A intron 1 likely influences degree of vernalization sensitivity, (c) a winter habit is retained when ZCCT-Ha has been deleted, and (d) the ZCCT-H genes have higher levels of allelic polymorphism than other winterhardiness regulatory genes. Our results validate the model explaining the epistatic interaction of VRN-H2 and VRN-H1 under long-day conditions, demonstrate recovery of vernalization-sensitive progeny from crosses of vernalization-insensitive genotypes, show that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity, and provide molecular markers that are accurate predictors of “winter vs spring type” alleles at the VRN-H loci.  相似文献   

8.
Three cassava clones (SOM-1, “05”, and “50”) were cultured in vitro on MS medium plus sucrose (30 g L−1) and myo-inositol (100 mg L−1) without plant growth regulators and with additions of 0 (control), 0.5, 1, 1.5, 2, 2.5, and 3 g L−1 NaCl to test their salt tolerance. The same cassava clones were cultivated in greenhouse conditions on a sandy soil substratum and irrigated with 20% strength Hoagland solution, and additions of 0, 4, and 8 g L−1 of NaCl. Salinity negatively affected the survival, development, leaf water content, and mineral composition (mainly by accumulation of Cl and Na) of both in vitro and ex vitro plants, but with different intensity in each clone. In both conditions of culture (in vitro and ex vitro) clone SOM-1, from a desert arid saline zone of Somalia, was the most tolerant and clone “05”, from a rainy region of Ivory Coast, the most sensitive. Clone “50” tolerance to in vitro salt treatments, although lower, was not significantly different from that of SOM-1 but the ex vitro response was similar to “05”. In general, there was a correlation between in vitro and ex vitro behavior of the cassava plant regarding salt tolerance, which would allow the in vitro culture method to be used for selection of salt-tolerant plants of this crop.  相似文献   

9.
The metabolic pathway of primary carbon fixation was studied in a peculiar pennate marine diatom, Haslea ostrearia (Bory) Simonsen, which synthesizes and accumulates a blue pigment known as “marennine”. Cells were cultured in a semi-continuous mode under saturating [350 μmol(photon) m−2 s−1] or non-saturating [25 μmol(photon) m−2 s−1] irradiance producing “blue” (BC) and “green” (GC) cells, characterized by high and low marennine accumulation, respectively. Growth, pigment contents (chlorophyll a and marennine), 14C accumulation in the metabolites, and the carbonic anhydrase (CA) activity of the cells were determined during the exponential growth phase. Growth rate and marennine content were closely linked to irradiance during growth: higher irradiance increased both growth rate and marennine content. On the other hand, the Chl a concentration was lower under saturating irradiance. The distribution between the Calvin-Benson (C3) and β-carboxylation (C4) pathways was very different depending on the irradiance during growth. Metabolites of the C3 cycle contained about 70 % of the total fixed radioactivity after 60 s of incorporation into cells cultured under the non-saturating irradiance (GC), but only 47 % under saturating irradiance (BC). At the same time, carbon fixation by β-carboxylation was 24 % in GC versus about 41 % in BC, becoming equal to that in the C3 fixation pathway in the latter. Internal CA activity remained constant, but the periplasmic CA activity was higher under low than high irradiance.  相似文献   

10.
Crassulacean acid metabolism (CAM) was induced in Mesembryanthemum crystallinum L. by either NaCl- or high light (HL)- stress. This generated in mesophyll cells predominantly of NaCl-stressed plants two different types of vacuoles: the generic acidic vacuoles for malic acid accumulation and additionally less acidic (“neutral”) vacuoles for NaCl sequestration. To examine differences in the tonoplast properties of the two types of vacuoles, we separated microsomal membranes of HL- and NaCl-stressed M. crystallinum plants by centrifugation in sucrose density gradients. Positive immunoreactions of a set of antibodies directed against tonoplast specific proteins and tonoplast specific ATP- and PPi-hydrolytic activity were used as markers for vacuolar membranes. With these criteria tonoplast membranes were detected in both HL- and NaCl-stressed plants in association with the characteristic low sucrose density but also at an unusual high sucrose density. In HL-stressed plants most of the ATP- and PPi-hydrolytic activity and cross reactivity with antibodies including that directed against the Na+/H+-antiporter from Arabidopsis thaliana was detected with light sucrose density. This relationship was inverted in NaCl-stressed plants; they exhibited most pump activity and immunoreactivity in the heavy fraction. The relative abundance of the heavy membrane fraction reflects the relative occurrence of “neutral” vacuoles in either HL- or NaCl-stressed plants. This suggests that tonoplasts of the “neutral” vacuoles sediment at high sucrose densities. This is consistent with the view that this type of vacuoles serves for Na+ sequestration and is accordingly equipped with a high capacity of proton pumping and Na+ uptake via the Na+/H+-antiporter.  相似文献   

11.
Summary Initial trials with tomato-root cultures disclosed the desirability of employing a gently agitated liquid medium containing iron in the chelated form. For the normal cultivars “Ace” and “Tropic”, subcultures were best achieved by utilizing sectors that possessed one or more newly emerged laterals. Continuous cultures of a nonlateral-forming tomato mutant, “Diageotropica”, and of citron were accomplished by subculturing tips of the elongating primary roots. The tomato roots were cultured in White's medium with the Fe2(SO4)3 replaced by 0.03 mM NaFeEDTA. Sustained growth of citron-root tips necessitated the use of a medium containing Murashige and Skoog salts, 7.5% sucrose, 100 mg per I each of citric acid and thiamine HCl, and 5000 mg per li-inositol. The success with citron-root cultures was extendable to all cultivars ofC. medica L., but not to otherCitrus species relatives. Both citron and “Diageotropica” root cultures manifested undiminished elongation through repeated subcultures; but neither produced laterals in response to any cultural treatments. Research was supported in part by National Science Foundation Grant OIP75-10390 and Elvenia J. Slosson Fellowship in Ornamental Horticulture.  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase activity (RuBPC), chlorophyll (chl) and protein (prot) concentrations and chlorophyll/protein (chl/prot) ratios were determined in five differentPopulus clones together with their maximal net CO2 uptake rates (Pmax). A classic reference clone (Populus ×euramericana “Robusta” (Dode) Guinier) was compared with four recently selected euramerican and interamerican crossings. Chl/prot ratio and RuBPC activity varied among the different clones, while chl a/chlb ratio showed only a very low coefficient of variation (1.7%) for the five clones. Poplar clone “Robusta” could be distinguished from the recent faster growing clones based on the different biochemical characteristics. A significant correlation was found between both total chl concentration and chl/prot ratio with Pmax for the five clones.  相似文献   

13.
A seaweed with the local name “endong” is a rare eucheumoid variety that has recently been farmed in Tawi-Tawi, southern Philippines. Local farmers describe it as “eel-like” because of its long, slender and smooth thalli. Being somewhat similar in appearance to the dominantly farmed seaweed “tambalang” (Kappaphycus alvarezii var. tambalangii), farmers mix their harvests of “endong” with those of “tambalang”. We analyzed the hydrocolloid extract from “endong” using spectroscopic and chemical techniques. The extract’s infrared and nuclear magnetic resonance (1H and 13C) spectra, and sulfate and 3,6-anhydrogalactose contents revealed carrageenan of the iota-type, similar to extracts from another farmed species, Eucheuma denticulatum. This result implies that “endong” carrageenan exhibits physico-chemical properties different from those of kappa-carrageenan of “tambalang”. The findings of this study are of significance to the seaweed industry, as carrageenan quality problems could potentially arise from a mixed harvest. Seaweed farmers are advised to separate their harvests of “endong” and “tambalang”. Presented at the 19th International Seaweed Symposium, Kobe, Japan  相似文献   

14.
In a 16-day study, the effect of increasing soil NaCl on leaf photosynthesis, chlorophyll a fluorescence, chloroplast ion compartmentation, variations of SOD (superoxide dismutase) and POD (peroxidase) isoenzymes and the relevance to salt resistance were investigated in seedlings of Populus euphratica Oliv. (P. euphratica) (salt-resistant) and rooted cuttings of P.popularis 35–44” (P. popularis) (salt-sensitive). Initial salinity caused a rapid decline of net photosynthetic rate (Pn) and unit transpiration rate (TRN) in P. euphratica, resulting from the NaCl-induced stomatal closure. In a longer-term of salinity, CO2 assimilation in P. popularis was severely reduced whereas stressed P. euphratica maintained a relatively higher and constant level of Pn. Pn–Ci curves showed that salt stress (12 days) reduced CO2 saturation point (CSP), CO2 saturated Pn (CSP n ), and carboxylation efficiency (CE), but increased CO2 compensation point (CCP) in the two genotypes. Similarly, salinity lowered light saturation point (LSP), light saturated Pn (LSP n ), and apparent quantum yield (AQY) in both genotypes but the inhibitory effect of NaCl on light reaction was more pronounced in P. popularis, as compared to P. euphratica. Chlorophyll a fluorescence data indicated that a longer-term of salt stress (12 days) exhibited a marked influence on fluorescence parameters of P. popularis in both dark- and light-adapted states: (a) NaCl inhibited the maximal efficiency of PSII photochemistry (Fv/Fm) due to the salt-induced increase of Fo (the minimal fluorescence) and the marked decline of Fm (the maximal fluorescence); (b) salinity decreased coefficient of photochemical quenching (qP) but markedly elevated coefficient of nonphotochemical quenching (qN) in the light-adapted state. In contrast, there were no corresponding changes of chlorophyll a fluorescence in salinised P. euphratica. X-ray microanalysis results showed that salinity caused salt accumulation in the chloroplasts of P. popularis in which Na+ and Cl increased up to 42 and 221 mmol dm−3, respectively. Great buildup of Na+ and Cl in chloroplasts of P. popularis may exhibit direct and indirect restrictions on dark and light reactions. The activity of SOD isoenzymes (CuZn-SOD I and CuZn-SOD II) and POD isoenzymes in P. popularis decreased with increasing exposure period, and leaf malondialdehyde (MDA) content and membrane permeability (MP) increased correspondingly. In contrast to P. popularis, stressed P. euphratica maintained activity of SOD and POD isoenzymes and there was no significant increase of MDA and MP during the period of salt stress. In conclusion, P. euphratica plants exhibited a higher capacity to maintain the activity of anti-oxidant enzymes and restrict salt accumulation in the chloroplasts, the photosynthesis processes were less restricted consequently.  相似文献   

15.
Frequent occurrences of coral bleaching and the ensuing damage to coral reefs have generated interest in documenting stress responses that precede bleaching. The objective of this study was to assess and compare physiological changes in healthy, semi-bleached and totally bleached colonies of two coral species, Porites lutea and Acropora formosa, during a natural bleaching event in the Lakshadweep Archipelago in the Arabian Sea to determine the traits that will be useful in the diagnosis of coral health. In April 2002, three “health conditions” were observed as “appearing healthy,” “semi-bleached” and “bleached” specimens for two dominant and co-occurring coral species in these islands. Changes in the pigment composition, zooxanthellae density (ZD), mitotic index (MI) of zooxanthellae, RNA/DNA ratios and protein profile in the two coral species showing different levels of bleaching in the field were compared to address the hypothesis of no difference in health condition between species and bleaching status. The loss in chlorophyll (chl) a, chl c and ZD in the transitional stage of semi-bleaching in the branched coral A. formosa was 80, 75 and 80%, respectively. The losses were much less in the massive coral P. lutea, being 20, 50 and 25%, respectively. The decrease in zooxanthellar density and chl a was accompanied by an increased MI of zooxanthellae and RNA/DNA ratios in both the species. There was an increase in accumulation of lipofuscin granules in partially bleached P. lutea tissue, which is an indication of cellular senescence. Multivariate statistical analyses showed that colonies of P. lutea ranked in different health conditions differed significantly in chl a, chl c, ZD, RNA/DNA ratios, and protein concentrations, whereas in A. formosa chl a, chl c, chl a/c, phaeopigments and MI contributed to the variance between health conditions.  相似文献   

16.
A four variables-five levels Central Composite Design (CCD) was developed to model the individual and interactive effects of carbohydrates (lactose or maltose), yeast extract, di-ammonium hydrogen citrate and pH on the biomass production (Abs600 nm), viable and cultivable cell number and acidifying ability of a probiotic strain of Lactobacillus plantarum, isolated from table olives “Bella di Cerignola”. pH values were modeled through a negative Gompertz equation, in order to obtain the parameter α (metabolic adaptation time). This value and the biomass were submitted to a stepwise procedure and second order polynomial equations were derived. The parameter α was affected by the initial pH and lactose; the effect of the maltose, however, was not significant. The biomass production increased with increasing of yeast extract, di-ammonium hydrogen citrate and maltose concentrations and was maximum at pH 6.0 and 20 g l−1 of lactose.  相似文献   

17.
Common problems faced in farming of the red algal genus Kappaphycus/Eucheuma are “ice-ice disease” and the occurrence of epiphytes. Considerable work has been documented on “ice-ice disease” and it's mode of infection but limited information is available on the emergence of epiphytes. The present study addresses the phenomenon of epiphyte infection, its prevalence in commercially cultivated red alga, Kappaphycus alvarezii, and their variability associated with seasonality. Cultured seaweed became susceptible to epiphytes in the dry seasons (1) between March – June and (2) September – November. Findings revealed Neosiphonia savatieri (Hariot) M. S. Kim et I. K. Lee, as the dominant infecting epiphyte, representing up to 80–85% of the epiphyte present during peak seasons. Besides N. savatieri, Neosiphonia apiculata, Ceramium sp., Acanthophora sp. and Centroceras sp. were observed in smaller quantities. SEM (Scanning Electron Microscope) micrographs revealed the epiphyte's attachment to the host. Further histological study showed the extent of penetration of epiphytes into the host's cortex tissues and condition of its surrounding tissues. The outbreak of epiphytic filamentous red algae also correlated with drastic changes in seawater temperature and salinity during March– June and September – November.  相似文献   

18.
The effects of drought on photochemical efficiency of PSII in leaves of 22 hybrids of Festuca pratensis × Lolium multiflorum and Festuca pratensis × Lolium perenne and of Festuca pratensis cv. Skra were investigated. A significant decrease of electron transport efficiency (about 25%) in PSII (ΦPSII) was not found before 9 days of seedling growth in hydroponics with water potential (Ψw) equal to −0.8 MPa (simulated “soil drought”). The decrease of ΦPSII was similarly related to that of excitation energy capture by open PSII reaction centre (Fv’/Fm’) and also to the decrease of the proportion of oxidized to reduced QA (photochemical fluorescence quenching, qp). According to the drought prolongation, variation of all parameters of fluorescence between genotypes significantly increased. The seedlings of some genotypes were able to recover electron transport efficiency in PSII after increasing water potential in nutrient solution (removing the “soil drought”). When plants grew in containers with soil and 4 genotypes with the highest sensitivity of electron transport to drought (S) as well as 4 genotypes with the highest tolerance (T) were compared 17 days after watering ceased, Ψw in leaves considerably decreased, but the differences between S and T genotypes were often not significant in this respect. The differences between S and T genotypes, as values of Fv/Fm were concerned, also appeared small (about 5%), similarly as that of Fv’/Fm’ (5%), qp (12%) and ΦPSII (about 15%). Drought stress increased non-photochemical quenching of chlorophyll fluorescence (NPQ) 15 to 47% and this could protect the PSII reaction centres from damages because of energy excess. The increase of NPQ was not closely connected with drought resistance of plants because it was similar in some genotypes tolerant to dehydration as well as in sensitive ones. The results of the experiments suggest that resources of genetic variability in Festulolium may be sufficient for revealing differences between genotypes on the basis of measurement of chlorophyll a fluorescence, as far as their tolerance to soil drought is concerned. As the tolerance of PSII against drought is high, the determinations of fluorescence should be performed rather under severe stress. Such methods seem to be useful for selection of genotypes with high drought tolerance as well as with the ability to at least partial repairing of PSII after drought.  相似文献   

19.
Four flattened Gracilaria species have been reported from Taiwan: G. spinulosa, G. vieillardii, G. textorii and G. punctata, identified based on branching pattern, the presence or absence of spines, and characters that often vary seasonally. Gracilaria spinulosa was originally described from the type locality, Tainan. Species with toothed margins are usually referred to G. “vieillardii”; those with smooth margins to G. “textorii”, and those with smooth margins and dark spots scattered over the blade to G. “punctata”. Molecular analyses show that specimens with marginal teeth cluster in three different groups: a G. “vieillardii” clade, a G. spinulosa clade, and a clade sister to G. spinulosa. An undescribed species comprises the third clade, which is distinguished by its relatively large gonimoblast cells and weakly developed tubular nutritive cells. The three clades can be separated by the character of the tubular nutritive cells, the size of gonimoblast cells and certain vegetative features. Plants with entire margins form a single clade characterized by cystocarps with basal tubular nutritive cells and their absence in the cystocarp cavity. They are nested in the Hydropuntia complex and are referred to as Gracilaria “punctata” here. The records of G. textorii and G. punctata from Taiwan require reinvestigation in comparison with the Japanese species.  相似文献   

20.
A breakthrough in transgenic Arabidopsis thaliana research was the development of the floral dip transformation protocol, a simple and reliable method of obtaining transformants, T1 transgenic lines, at high efficiency while avoiding the use of tissue culture. However, the traditional protocol (a “sterile” method) of obtaining T2 transgenic lines has not evolved along with improvements in transformation technology as it continues to be laborious and time-consuming. In this study, we report on the development of an improved protocol (a “nonsterile” method) for selecting and growing A. thaliana transformants (T2 transgenic lines) resistant to kanamycin under nonsterile conditions. This protocol involves the use of a simple yet specialized device that will aid in solium selection of T2 transgenic lines that can be rapidly grown in a hydroponic system. The “nonsterile” method reduces labor and time involved as compared to the “sterile” method; moreover, it is easy to set up and maintain. This method may also be applicable to other selecting agents, and perhaps to other plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号