首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In cultured neonatal islet cells, glucose (16.7 mM) and K+ (50 mM) increased cytosolic free Ca2+ ([Ca2+]i). The increments in [Ca2+]i induced by either glucose or K+ were similar to those obtained in cultured adult islet cells but only half of that recorded in freshly isolated adult islet cells. These data indicate that, in neonatal islet cells, the reduced insulin release in response to glucose is associated with a diminished increase in [Ca2+]i. This reduced insulin response may not solely be due to an impaired regulation of the ATP-sensitive K+ channels as previously suggested. It may also result from some alteration in the process of Ca2+ inflow through voltage-sensitive Ca2+ channels.  相似文献   

2.
Glucose increases cytosolic Ca2+ activity in pancreatic islet cells   总被引:2,自引:0,他引:2  
Isolated cells prepared from rat pancreatic islets were labelled with the tetraacetoxymethyl ester of the fluorescent Ca2+ indicator quin-2. An increase in the extracellular concentration of glucose provoked a rapid and sustained increase in the fluorescence of the labelled cells. This indicates that glucose increases cytosolic Ca2+ activity in pancreatic islet cells.  相似文献   

3.
The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependentOFF efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 microM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 microM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.  相似文献   

4.
The effect of amiloride, an inhibitor of Na+-H+ exchange, on intracellular pH (pHi), 86Rb outflow, 45Ca outflow and insulin release from pancreatic rat islets was examined. In the 0.1-1 mM range, amiloride transiently reduced pHi of glucose-deprived islets and allowed glucose to induce a sustained decrease in pHi of the islet cells. Amiloride reproduced the effect of glucose to decrease 86Rb and 45Ca outflow. In the presence of glucose (5.6 mM or more), amiloride (100 microM) acted synergistically with the sugar to reduce K+ outflow, and to stimulate 40Ca inflow and insulin release from perifused islets. These results add strong support to the view that the generation of protons through the metabolism of glucose represents an important step in the process of glucose-induced release. The stimulation by glucose of Na+-H+ exchange apparently masks and even overcomes the glucose-induced decrease in pHi otherwise expected from the increase in catabolic fluxes.  相似文献   

5.
T Yada  M Kakei  H Tanaka 《Cell calcium》1992,13(1):69-76
Since it was reported that glucose stimulation initially lowers as well as subsequently raises the cytosolic free calcium concentration [( Ca2+]i) in pancreatic islet cells from hyperglycemic ob/ob mice, it has been argued whether the lowering of [Ca2+]i is physiological or artifactual. In the present study, [Ca2+]i in single pancreatic beta-cells from normal rats was measured by Fura-2 microfluorometry. Following elevation of the glucose concentration from 2.8 mM (basal) to 16.7 mM, a bimodal change in [Ca2+]i, an initial decrease and subsequent increase, was demonstrated. When the basal glucose concentration was raised to 5.6 mM, the stimulation with 16.7 mM glucose also induced the decrease in [Ca2+]i in the majority of the cells, though the amplitude of the decrease was reduced. An elevation of the glucose concentration from 2.8 to 5.6 mM induced the decrease in [Ca2+]i but not usually the increase in [Ca2+]i. Removal of extracellular Ca2+ eliminated the increase in [Ca2+]i without affecting the decrease in [Ca2+]i. Thus, the decrease and increase in [Ca2+]i were clearly dissociated under certain conditions. In contrast, mannoheptulose (an inhibitor of glucose metabolism) inhibited both the decrease and increase in [Ca2+]i. These results demonstrate that the glucose-induced bimodal change in [Ca2+]i is a physiological response of islet beta-cells, and that the decrease and increase in [Ca2+]i are generated by mutually-independent mechanisms which are operated through glucose metabolism by islet beta-cells.  相似文献   

6.
In human pancreatic islets an increase in the glucose concentration from 3 to 20 mM raised the free cytoplasmic Ca2+ concentration [( Ca2+]i), an effect being reversible upon withdrawal of the sugar. Depolarization with a high concentration of K+ or the sulphonylurea tolbutamide also raised [Ca2+]i. Addition of extracellular ATP produced a transient rapid rise in [Ca2+]i. Oscillations in [Ca2+]i were observed in the presence of 10 mM glucose. Insulinoma cells responded to glucose and tolbutamide with increases in [Ca2+]i, whereas the sulphonamide diazoxide caused a decrease in [Ca2+]i. These findings confirm previous results obtained in rodent beta-cells.  相似文献   

7.
Maitotoxin (MTX) provoked a dose-dependent increase in both 45Ca efflux and insulin release from rat pancreatic islets perifused in the presence or absence of glucose, provided that Ca2+ was present in the perifusate. The stimulatory effect of MTX on 45Ca outflow was enhanced by CGP 28392. The toxin did not reduce 86Rb outflow and 86Rb inflow. It is suggested that the secretory response to MTX is mediated by direct activation of voltage-dependent Ca2+ channels.  相似文献   

8.
In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86Rb+ efflux, and 45Ca++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86Rb+ efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was no longer any insulin responsiveness to glucose. The 45Ca++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45Ca++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium (86Rb+) efflux may not be related to changes of NADPH and GSH.  相似文献   

9.
Catecholamine (CA) release from adrenal medulla evoked by muscarinic receptor stimulation has been studied using isolated perfused adrenal gland and cultured chromaffin cells from dogs. Muscarine and oxotremorine (1-100 microM), and bethanechol (0.1-1 mM) dose-dependently stimulated CA release. Muscarine-evoked CA release was antagonized with M1-antagonist, pirenzepine and, to a lesser extent, with atropine; and was reduced either by removal of extracellular Ca2+ or treatment with Ca2+ channel blockers. Muscarine caused an increase of 45Ca uptake and 22Na uptake. Tetrodotoxin (TTX) did not affect muscarine-evoked increase of 22Na uptake and CA release. Under the absence of extracellular Ca2+, muscarine stimulated a 45Ca efflux. Muscarine-induced CA release was attenuated by treating the cells with 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate-HCl (TMB-8) which blocks Ca2+ release from the intracellular store. A phospholipase C inhibitor, neomycin, markedly reduced muscarine-induced CA release but not nicotine- and high K(+)-evoked release. Cinnarizine, a Ca2+ channel blocker, attenuated muscarine-evoked but not caffeine-induced CA release and 45Ca efflux in the absence of extracellular Ca2+. Muscarine caused an increase in intracellular free Ca2+ concentration ([Ca2+]i) in the presence of extracellular Ca2+. It caused a similar increase, but to a lesser extent, in the absence of extracellular Ca2+. The increase of [Ca2+]i induced by muscarine without extracellular Ca2+ was reduced by neomycin and cinnarizine. Polymixin B and retinal, which reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced CA release, had little effect on muscarine-induced CA release. Muscarine increased cellular Ins(1,4,5)P3 production, and atropine inhibited this increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of quinine and 9-aminoacridine, two blockers of potassium conductance in islet cells, on 45Ca efflux and insulin release from perifused islets were investigated in order to elucidate the mechanisms by which glucose initially reduces 45Ca efflux and later stimulates calcium inflow in islet cells. In the absence of glucose, 100 μM quinine stimulated 45Ca net uptake, 45Ca outflow rate and insulin release. Quinine also dramatically enhanced the cationic and the secretory response to intermediate concentrations of glucose, but had little effect on 45Ca net uptake, 45Ca fractional outflow rate and insulin release at a high glucose concentration (16.7 mM). The ability of quinine to stimulate 45Ca efflux depended on the presence of extracellular calcium, suggesting that it reflects a stimulation of calcium entry in the islet cells. In the absence of extracellular calcium, quinine provoked a sustained decrease in 45Ca efflux. Such an inhibitory effect was not additive to that of glucose, and was reduced at low extracellular Na+ concentration. At a low concentration (5 μM), quinine, although reducing 86Rb efflux from the islets to the same extent as a non-insulinotropic glucose concentration (4.4 mM), failed to inhibit 45Ca efflux. In the presence of extracellular calcium, 9-aminoacridine produced an important but transient increase in 45Ca outflow rate and insulin release from islets perifused in the absence of glucose. In the absence of extracellular calcium, 9-aminoacridine, however, failed to reduced 45Ca efflux from perifused islets. It is concluded that quinine, by reducing K+ conductance, reproduces the effect of glucose to activate voltage-sensitive calcium channels and to stimulate the entry of calcium into the B-cell. However, the glucose-induced inhibition of calcium outflow rate, which may also participate in the intracellular accumulation of calcium, does not appear to be mediated by changes in K+ conductance.  相似文献   

11.
The effects of glucose on cytoplasmic free Ca2+ concentration, [Ca2+]i, and insulin release were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Measurements of [Ca2+]i were performed in cell suspensions in a cuvette and in single cell-aggregates in a microscopic system, using fura 2 and quin 2. Insulin release was studied from indicator loaded cells in a column perifusion system. In the presence of 1.28 mM extracellular Ca2+, an increase in the glucose concentration from 0 to 20 mM had two major effects on [Ca2+]i. Initially there was a decrease, which was immediately followed by a pronounced increase. At reduced extracellular Ca2+, or when Ca2+ influx was blocked, glucose induced only a decrease in [Ca2+]i. With increasing intracellular concentrations of indicator, the effects of glucose on [Ca2+]i were markedly reduced. Changes in [Ca2+]i, similar effects being obtained in the cuvette and microfluorometric measurements, were paralleled by changes in insulin release. Insulin release from indicator loaded cells did not markedly differ from that of non-loaded controls, either with respect to rapidity or size in the response to the sugar. The addition of 20 mM glucose increased the efflux of fura 2, an effect that was not related to insulin release. Permeabilization of indicator loaded cells demonstrated a substantial amount of fura 2 bound intracellularly. Although the effects of glucose on [Ca2+]i seemed to be similar in fura 2 and quin 2 loaded cells, the demonstrated leakage and possible intracellular binding should be considered before using fura 2 for measurements in pancreatic beta-cells.  相似文献   

12.
Removing extracellular Na+ (Na+o) evoked a large increase in cytosolic free Ca2+ concentration ([Ca2+]i in human skin fibroblasts. Decreasing [Na+]o from 120 to 14 mM caused the half-maximal peak increase in [Ca2+]i. Removing Na+o strongly stimulated 45Ca2+ efflux and decreased total cell Ca2+ by about 40%. Bradykinin caused changes in [Ca2+]i, total Ca2+, and 45Ca2+ fluxes similar to those evoked by removing Na+o. Prior stimulation of the cells with bradykinin prevented Na+o removal from increasing [Ca2+]i and vice versa. Na+o removal rapidly increased [3H]inositol polyphosphate production. Loading the cells with Na+ had no effect on the increase in 45Ca2+ efflux produced by Na+o removal. Therefore, decreasing [Na+]o probably stimulates a "receptor(s)" which is sensitive to extracellular, not intracellular, Na+. Removing Na+o also mobilized intracellular Ca2+ in smooth muscle and endothelial cells cultured from human umbilical and dog coronary arteries, respectively.  相似文献   

13.
The effects of three types of amino acids on 45Ca2+ fluxes in rat pancreatic islets have been compared. Alanine, a non-insulinotropic neutral amino acid, transported with Na+, increased 45Ca2+ efflux in the presence or in the absence of extracellular Ca2+, but not in the absence of Na+. Its effects in Na+-solutions were practically abolished by 7 mM-glucose. Alanine slightly stimulated 45Ca2+ influx (5 min uptake) only when Na+ was present. Two insulinotropic cationic amino acids (arginine and lysine) triggered similar changes in 45Ca2+ efflux. They accelerated the efflux in the presence of Ca2+ and inhibited the efflux in a Ca2+-free medium, whether glucose was present or not. In an Na+-free Ca2+-medium, arginine and lysine markedly accelerated 45Ca2+ efflux, but this effect was suppressed by 7 mM-glucose. Arginine stimulated 45Ca2+ influx irrespective of the presence or absence of glucose and Na+. Leucine, a neutral insulinotropic amino acid well metabolized by islet cells, inhibited 45Ca2+ efflux from the islets in a Ca2+-free medium; this effect was potentiated by glutamine. In the presence of Ca2+ and Na+, leucine was ineffective alone, but triggered a marked increase in 45Ca2+ efflux when combined with glutamine. In an Na+-free Ca2+-medium, leucine accelerated 45Ca2+ efflux to the same extent with or without glutamine. Leucine also stimulated 45Ca2+ influx in the presence or in the absence of Na+, but its effects were potentiated by glutamine only in the presence of Na+. The results show that amino acids of various types cause distinct changes in 45Ca2+ fluxes in pancreatic islets. Certain of these changes involve an Na+-mediated mobilization of cellular Ca2+ from sequestering sites where glucose appears to exert an opposite effect.  相似文献   

14.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

15.
A rise in extracellular D-glucose concentration results in a preferential and Ca2(+)-dependent stimulation of mitochondrial oxidative events in pancreatic islet cells. The possible participation of Ca2(+)-dependent mitochondrial dehydrogenases, especially 2-ketoglutarate dehydrogenase, in such an unusual metabolic situation was explored in intact islets, islet homogenates and isolated islet mitochondria. In intact islets exposed to a high concentration of D-glucose, the removal of extracellular Ca2+ impaired D-[6-14C]glucose oxidation whilst failing to affect the cytosolic or mitochondrial ATP/ADP ratios. In islet homogenates, the activity of 2-ketoglutarate dehydrogenase displayed exquisite Ca2(+)-dependency, the presence of Ca2+ causing a 10-fold increase in affinity for 2-ketoglutarate. In intact islet mitochondria, the oxidation of 2-[1-14C]ketoglutarate also increased as a function of extramitochondrial Ca2+ availability. Moreover, prior stimulation of intact islets by D-glucose resulted in an increased capacity of mitochondria to oxidize 2-[1-14C]ketoglutarate. The absence of extracellular Ca2+ during the initial stimulation of intact islets impaired but did not entirely suppress such a memory phenomenon. It is proposed that the mitochondrial accumulation of Ca2+ in nutrient-stimulated islets indeed accounts, in part at least, for the preferential stimulation of mitochondrial oxidative events in this fuel-sensor organ.  相似文献   

16.
A rise in the extracellular concentration of glucose from an intermediate to a high value changes the burst pattern of electrical activity of the pancreatic B-cell into a continuous firing, and yet activates the B-cell Ca2+-sensitive K+ permeability. The hypothesis that glucose exerts such effects by inhibiting the Na+, K+-ATPase was investigated. Ouabain (1 mM) mimicked the effect of 16.7 mM glucose in stimulating 86Rb, 45Ca outflow and insulin release from perifused rat pancreatic islets first exposed to 8.3 mM glucose. The stimulation by ouabain of 86Rb outflow was reduced in the absence of extracellular Ca2+ and almost completely abolished in the presence of quinine, and inhibitor of the Ca2+-sensitive K+ permeability. In the presence of ouabain, a rise in the glucose concentration from 8.3 to 16.7 mM failed to stimulate 86Rb outflow. However, the rise in the glucose concentration failed to inhibit 86Rb influx in islet cells, while ouabain dramatically reduced 86Rb influx whether in the presence of 8.3 or 16.7 mM glucose. These findings do not suggest that inhibition of the B-cell Na+, K+-ATPase represents the mechanism by which glucose in high concentration stimulates 86Rb outflow and induces continuous electrical activity in the B-cell.  相似文献   

17.
1. Menadione (2-methyl-1,4-naphthoquinone) inhibits insulin release evoked in the rat endocrine pancreas by glucose or glyceraldehyde, but fails to affect the secretory response to Ca2+, Ba2+, theophylline or gliclazide. The inhibitory effect of menadione upon glucose-induced insulin release is a dose-related, rapid and reversible phenomenon, menadione and glucose acting apparently as competitive antagonists. Menadione affects both the early and late phase of the secretory response to glucose. Menadione also antagonizes in a dose-related fashion the ability of glucose to reduce 86Rb efflux, to provoke 86Rb accumulation, to cause biphasic changes in 45 Ca efflux and to stimulate 45 Ca net uptake in pancreatic islets. 2. It is concluded that menadione impairs the insulinotropic action of glucose and other nutrients by impeding the remodelling of cationic fluxes normally provoked by these secretagogues in islet cells. Menadione, however, does not affect the capacity of divalent cations to activate the effector system which controls the release of secretory granules. Menadione may therefore represent a valuable tool to elucidate the mechanism by which glucose normally modifies the movement of cations in the pancreatic B-cell.  相似文献   

18.
We investigated the effect of cytosolic and extracellular Ca2+ on Ca2+ signals in pancreatic acinar cells by measuring Ca2+ concentration in the cytosol([Ca2+]c) and in the lumen of the ER([Ca2+]Lu). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released Ca2+ mainly from the basolateral ER-rich part of the cell. The rate of Ca2+ release from the ER was highly sensitive to the buffering of [Ca2+]c whereas ER Ca2+ refilling was enhanced by supplying free Ca2+ to the cytosol with [Ca2+]c clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM Ca2+. Elevation of extracellular Ca2+ to 10 mM from 1 mM raised resting [Ca2+]c slightly and often generated [Ca2+]c oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular Ca2+-sensing receptors linked to phospholipase C that mobilize Ca2+ from the ER, exposure of cells to 10 mM Ca2+ did not decrease [Ca2+]Lu but rather raised it. From these findings we conclude that 1) ER Ca2+ release is strictly regulated by feedback inhibition of [Ca2+]c, 2) ER Ca2+ refilling is determined by the rate of Ca2+ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular Ca2+-induced [Ca2+]c oscillations appear to be triggered not by activation of extracellular Ca2+-sensing receptors but by the ER sensitised by elevated [Ca2+]c and [Ca2+]Lu.  相似文献   

19.
The effect of DIP (an oxidant of glutathione) on 45Ca2+ net uptake induced by a variety of stimulators of insulin secretion was studied in rat pancreatic islets. In addition the effect of exogenous glutathione (GSH) on 45Ca2+ net uptake in response to glucose was tested. DIP (0.1 mM) inhibited the increase of 45Ca2+ net uptake in the presence of glucose (16.7 mM) and glyceraldehyde (10 mM). A similar inhibitory effect could be demonstrated, when 45Ca2+ net uptake was enhanced by tolbutamide (100 micrograms/ml), glibenclamide (0.5 micrograms/ml), b-BCH (20 mM), 2-ketoisocaproate (20 mM), arginine (20 mM) in the presence of 3 mM glucose or by high extracellular potassium (20 mM). The increase of 45Ca2+ net uptake stimulated by leucine (20 mM) plus glucose (3 mM) was further augmented by DIP. Exogenous GSH did not affect 45Ca2+ net uptake in the presence of (5.6-16.7 mM) glucose. It is suggested that 45Ca2+ net uptake of pancreatic islets depends on the redox state of islet thiols regardless of whether uptake is promoted via inhibition of potassium efflux (nutrients, sulfonylureas) or by high potassium and arginine. The voltage sensitive calcium-channel is the site of action of critical thiols. It is possible that these thiols are localized at the inner side of the plasma membrane.  相似文献   

20.
Involvement of nitric oxide (NO) in the regulation of insulin secretion from pancreatic beta-cells was investigated by measuring cytosolic Ca2+ concentration ([Ca2+]i) in isolated rat pancreatic beta-cells. At 7.0 mM glucose, L-arginine (0.1 mM) elevated [Ca2+]i in about 50% of the beta-cells examined. The response was partially inhibited by an NO synthase inhibitor, N(G)-monomethyl-L-arginine (L-NMA; 0.1 mM), suggesting that part of the response was mediated by the production of NO from L-arginine. D-Arginine at higher concentrations (3 or 10 mM) also increased [Ca2+]i at 7.0 mM glucose; however, the response was not affected by L-NMA (0.1 mM). Similar [Ca2+]i elevation was produced by NO (10 nM) and sodium nitroprusside (SNP; 10 microM) at 7.0 mM glucose. The SNP-induced increase in [Ca2+]i was abolished by nicardipine (1 microM), suggesting that the [Ca2+]i response is mediated by Ca2+ influx through L-type voltage-operated Ca2+ channels. In the presence of oxyhemoglobin (1 microM), the [Ca2+]i elevation induced by NO (10 nM) was abolished. Neither degradation products of NO, NO2- nor NO3-, caused any changes in [Ca2+]i. 8-Bromo-cyclic GMP (8-Br-cGMP; 3 mM) and atrial natriuretic peptide (0.1 microM) elevated [Ca2+]i at 7.0 mM glucose. We conclude that NO, which is produced from L-arginine in pancreatic islets, facilitates glucose-induced [Ca2+]i increase via the elevation of cGMP in rat pancreatic beta-cells. NO-cGMP system may physiologically regulate insulin secretion from pancreatic beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号