共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Resonance Raman spectroscopy has been used to investigate the Fe-S stretching modes of the [4Fe-4S]2+ cluster in the oxidized iron protein of Clostridium pasteurianum nitrogenase. The results are consistent with a cubane [4Fe-4S] cluster having effective Td symmetry with cysteinyl coordination for each iron. In accord with previous optical and EPR studies [(1984) Biochemistry 23, 2118-2122], treatment with the iron chelator alpha, alpha'-dipyridyl in the presence of MgATP is shown to effect cluster conversion to a [2Fe-2S]2+ cluster. Resonance Raman data also indicate that partial conversion to a [2Fe-2S]2+ cluster is induced by thionine-oxidation in the presence of MgATP in the absence of an iron chelator. This result suggests new explanations for the dramatic change in the CD spectrum that accompanies MgATP-binding to the oxidized Fe protein and the anomalous resonance Raman spectra of thionine-oxidized Clostridium pasteurianum bidirectional hydrogenase. 相似文献
3.
4.
5.
Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme. 相似文献
6.
A Manodori G Cecchini I Schr?der R P Gunsalus M T Werth M K Johnson 《Biochemistry》1992,31(10):2703-2712
Site-directed mutants of Escherichia coli fumarate reductase in which FrdB Cys204, Cys210, and Cys214 were individually replaced by Ser and in which Val207 was replaced by Cys were constructed and overexpressed in a strain of E. coli lacking a wild-type copy of fumarate reductase and succinate dehydrogenase. The consequences of these mutations on bacterial growth, enzymatic activity, and the EPR properties of the constituent iron-sulfur clusters were investigated. The FrdB Cys204Ser, Cys210Ser, and Cys214Ser mutations result in enzymes with negligible activity that have dissociated from the membrane and consequently are incapable of supporting cell growth under conditions requiring a functional fumarate reductase. EPR studies indicate that these effects are associated with loss of both the [3Fe-4S] and [4Fe-4S] clusters, centers 3 and 2, respectively. In contrast, the FrdB Val207Cys mutation results in a functional membrane-bound enzyme that is able to support growth under anaerobic and aerobic conditions. However, EPR studies indicate that the indigenous [3Fe-4S]+,0 cluster (Em = -70 mV), center 3, has been replaced by a much lower potential [4Fe-4S]2+,+ cluster (Em = -350 mV), indicating that the primary sequence of the polypeptide determines the type of clusters assembled. The results of these studies afford new insights into the role of centers 2 and 3 in mediating electron transfer from menaquinol, the residues that ligate these clusters, and the intercluster magnetic interactions in the wild-type enzyme. 相似文献
7.
Kuang-Lung Hsueh Liang-Kun Yu Yung-Han Chen Ya-Hsin Cheng Yin-Cheng Hsieh Shyue-chu Ke Kuo-Wei Hung Chun-Jung Chen Tai-huang Huang 《Journal of bacteriology》2013,195(20):4726-4734
Iron is essential for pathogen survival, virulence, and colonization. Feo is suggested to function as the ferrous iron (Fe2+) transporter. The enterobacterial Feo system is composed of 3 proteins: FeoB is the indispensable component and is a large membrane protein likely to function as a permease; FeoA is a small Src homology 3 (SH3) domain protein that interacts with FeoB; FeoC is a winged-helix protein containing 4 conserved Cys residues in a sequence suitable for harboring a putative iron-sulfur (Fe-S) cluster. The presence of an iron-sulfur cluster on FeoC has never been shown experimentally. We report that under anaerobic conditions, the recombinant Klebsiella pneumoniae FeoC (KpFeoC) exhibited hyperfine-shifted nuclear magnetic resonance (NMR) and a UV-visible (UV-Vis) absorbance spectrum characteristic of a paramagnetic center. The electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) results were consistent only with the [4Fe-4S] clusters. Substituting the cysteinyl sulfur with oxygen resulted in significantly reduced cluster stability, establishing the roles of these cysteines as the ligands for the Fe-S cluster. When exposed to oxygen, the [4Fe-4S] cluster degraded to [3Fe-4S] and eventually disappeared. We propose that KpFeoC may regulate the function of the Feo transporter through the oxygen- or iron-sensitive coordination of the Fe-S cluster. 相似文献
8.
IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU 总被引:12,自引:0,他引:12
Iron-sulfur cluster biosynthesis in both prokaryotic and eukaryotic cells is known to be mediated by two highly conserved proteins, termed IscS and IscU in prokaryotes. The homodimeric IscS protein has been shown to be a cysteine desulfurase that catalyzes the reductive conversion of cysteine to alanine and sulfide. In this work, the time course of IscS-mediated Fe-S cluster assembly in IscU was monitored via anaerobic anion exchange chromatography. The nature and properties of the clusters assembled in discrete fractions were assessed via analytical studies together with absorption, resonance Raman, and M?ssbauer investigations. The results show sequential cluster assembly with the initial IscU product containing one [2Fe-2S](2+) cluster per dimer converting first to a form containing two [2Fe-2S](2+) clusters per dimer and finally to a form that contains one [4Fe-4S](2+) cluster per dimer. Both the [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU are reductively labile and are degraded within minutes upon being exposed to air. On the basis of sequence considerations and spectroscopic studies, the [2Fe-2S](2+) clusters in IscU are shown to have incomplete cysteinyl ligation. In addition, the resonance Raman spectrum of the [4Fe-4S](2+) cluster in IscU is best interpreted in terms of noncysteinyl ligation at a unique Fe site. The ability to assemble both [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU supports the proposal that this ubiquitous protein provides a scaffold for IscS-mediated assembly of clusters that are subsequently used for maturation of apo Fe-S proteins. 相似文献
9.
As in many other hydrogenases, the small subunit of the F420-reducing hydrogenase of Methanococcus voltae contains three iron-sulfur clusters. The arrangement of the three [4Fe-4S] clusters corresponds to the arrangement of [Fe-S] clusters in the [NiFeSe] hydrogenase of Desulfomicrobium baculatum. Many other hydrogenases contain two [4Fe-4S] clusters and one [3Fe-4S] cluster with a relatively high redox potential, which is located in the central position between a proximal and a distal [4Fe-4S] cluster. We have investigated the role of the central [4Fe-4S] cluster in M. voltae with regard to its effect on the enzyme activity and its spectroscopic properties. Using site-directed mutagenesis, we constructed a strain in which one cysteine ligand of the central [4Fe-4S] cluster was replaced by proline. The mutant protein was purified, and the [4Fe-4S] to [3Fe-4S] cluster conversion was confirmed by EPR spectroscopy. The conversion resulted in an increase in the redox potential of the [3Fe-4S] cluster by about 400 mV. The [NiFe] active site was not affected significantly by the mutation as assessed by the unchanged Ni EPR spectrum. The specific activity of the mutated enzyme did not show any significant differences with the artificial electron acceptor benzyl viologen, but its specific activity with the natural electron acceptor F420 decreased tenfold. 相似文献
10.
Cicchillo RM Baker MA Schnitzer EJ Newman EB Krebs C Booker SJ 《The Journal of biological chemistry》2004,279(31):32418-32425
L-Serine deaminases catalyze the deamination of L-serine, producing pyruvate and ammonia. Two families of these proteins have been described and are delineated by the cofactor that each employs in catalysis. These are the pyridoxal 5'-phosphate-dependent deaminases and the deaminases that are activated in vitro by iron and dithiothreitol. In contrast to the enzymes that employ pyridoxal 5'-phosphate, detailed physical and mechanistic characterization of the iron-dependent deaminases is limited, primarily because of their extreme instability. We report here the characterization of L-serine deaminase from Escherichia coli, which is the product of the sdaA gene. When purified anaerobically, the isolated protein contains 1.86 +/- 0.46 eq of iron and 0.670 +/- 0.019 eq of sulfide per polypeptide and displays a UV-visible spectrum that is consistent with a [4Fe-4S] cluster. Reconstitution of the protein with iron and sulfide generates considerably more of the cluster, and treatment of the reconstituted protein with dithionite gives rise to an axial EPR spectrum, displaying g axially = 2.03 and g radially = 1.93. M?ssbauer spectra of the (57)Fe-reconstituted protein reveal that the majority of the iron is in the form of [4Fe-4S](2+) clusters, as evidenced by the typical M?ssbauer parameters-isomer shift, delta = 0.47 mm/s, quadrupole splitting of Delta E(Q) = 1.14 mm/s, and a diamagnetic (S = 0) ground state. Treatment of the dithionite-reduced protein with L-serine results in a slight broadening of the feature at g = 2.03 in the EPR spectrum of the protein, and a dramatic loss in signal intensity, suggesting that the amino acid interacts directly with the cluster. 相似文献
11.
Redox titrations of the iron-sulphur clusters in fumarate reductase purified from Escherichia coli, monitored by ESR spectroscopy, identified three redox events, similar to those observed in other fumarate reductases and succinate dehydrogenases: Centre 1, a [2Fe-2S] cluster, at g = 2.03, 1.93, appeared on reduction with Em = -20 mV. Centre 3, probably a [3Fe-xS] cluster, at g = 2.02 appeared in the oxidized state with Em = -70 mV. Centre 2 has been observed as an increase in the electron-spin relaxation of Centre 1. It titrates as an n = 1 species with Em = -320 mV, but in our hands did not appear to contribute significant intensity to the g = 2.03, 1.93 signal. It therefore appears to be an additional centre which undergoes spin-spin interaction with Centre 1. The reduction of Centre 2 coincided with the appearance of an extremely broad ESR spectrum, observed at temperatures below 20 K, with features at g = 2.17, 1.9, 1.68. The broad signal was observed in both soluble and membrane-bound preparations. Its midpoint potential was -320 mV. Its integrated intensity was approximately equal to that of Centre 1, if its broad outer wings were taken into account. Consideration of the ESR properties of this signal, together with the amino acid sequence of the frdB subunit of the enzyme, indicates that Centre 2 is a [4Fe-4S] cluster which, in its reduced state, enhances the spin relaxation of the [2Fe-2S] Centre 1. 相似文献
12.
Dihydroxy acid dehydratase, the third enzyme in the branched-chain amino acid biosynthetic pathway, has been purified to homogeneity (5000-fold) from spinach leaves. The molecular weights of dihydroxy acid dehydratase as determined by sodium dodecyl sulfate and native gel electrophoresis are 63,000 and 110,000, respectively, suggesting the native enzyme is a dimer. 2 moles of iron were found per mol of protein monomer. Chemical analyses of iron and labile sulfide gave an Fe/S2- ratio of 0.95. The EPR spectrum of dithionite-reduced enzyme (gavg = 1.91) is similar to spectra characteristic of Rieske Fe-S proteins and has a spin concentration of 1 spin/1.9 irons. These results strongly suggest that dihydroxy acid dehydratase contains a [2Fe-2S] cluster, a novel finding for enzymes of the hydrolyase class. In contrast to the Rieske Fe-S proteins, the redox potential of the Fe-S cluster is quite low (-470 mV). Upon addition of substrate, the EPR signal of the reduced enzyme changes to one typical of 2Fe ferredoxins (gavg = 1.95), and the visible absorption spectrum of the native enzyme shows substantial changes between 400 and 600 nm. Reduction of the Fe-S cluster decreases the enzyme activity by 6-fold under Vmax conditions. These results suggest the direct involvement of the [2Fe-2S] cluster of dihydroxy acid dehydratase in catalysis. Similar conclusions have been reached for the catalytic involvement of the [4Fe-4S] cluster of the hydrolyase aconitase (Emptage, M. H., Kent, T. A., Kennedy, M. C., Beinert, H., and Münck, E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 4674-4678). 相似文献
13.
ISU-type proteins mediate cluster transfer to apo protein targets. Rate constants have been determined for cluster transfer from ISU to apo Fd for both Homo sapiens and Schizosaccharomyces pombe proteins, and cross reactions have also been examined. Substitution of a key aspartate residue of ISU is found to decrease the rate of cluster transfer by at least an order of magnitude (for wild-type Hs ISU cluster transfer to Hs apo Fd, k(2) approximately 540 M(-1) min(-1), relative 56 M(-1) min(-1) for D37A ISU). This change in rate constant does not reflect any change in binding affinity of the ISU and Fd proteins. The pH dependencies of cluster transfer rates are similar for WT and D37A ISU, arguing against a role for Asp37 as a catalytic base, although evidence for general base catalysis mediating deprotonation of Cys from the apo target is supported by an observed pK(a) of 6.9 determined from the pH profiles for both WT and D37A ISU. Such a pK(a) value is at the lower limit for Cys and is common for solvent-accessible Cys thiols. The temperature dependence of the rate constant defining the cluster transfer reaction for wild type versus the aspartate derivative is distinct. Thermal activation parameters (DeltaH and DeltaS) are consistent with a solvent-accessible ISU-bound cluster, with desolvation as a principle barrier to cluster transfer. Experiments to determine the dependence of reaction rate constants on viscosity indicate cluster transfer to be rate-limiting. Fully oxidized cluster appears to be the natural state for transfer to target proteins. Reduced Fd does not readily reduce ISU-bound [2Fe-2S](2+) and does not promote cluster transfer to an apo Fd target. 相似文献
14.
ISA type proteins mediate cluster transfer to apoprotein targets. Rate constants have been determined for cluster transfer from Schizosaccharomyces pombe ISA to apo Fd. Substitution of the cysteine residues of ISA produced derivative proteins (C72A, C136A, and C138A) that were found to be at least as active in cluster transfer reactions as the native form at 25 degrees C (k(2) approximately 170 M(-1) min(-1) for native, k(2) approximately 169 M(-1) min(-1) for C72A, k(2) approximately 206 M(-1) min(-1) for C136A, and k(2) approximately 242 M(-1) min(-1) for C138A), although the yield of cluster transfer was found to be lower as a consequence of the enhanced lability of clusters in the derivative proteins. Minor variations in rate constant for the ISA Cys derivatives do not reflect any change in the affinity of binding to the apo Fd since k(2) was found to be independent of the concentration of apo Fd over the range of 1-25 microM. The pH dependence of cluster transfer rates was found to be similar for native and C136A ISA, with an observed pK(a) of 7.8 determined from the pH profiles for cluster transfer activity of each protein. The temperature dependence of the rate constant defining the cluster transfer reaction for the wild type versus this C136A ISA derivative is distinct (DeltaH* approximately 6.3 kcal mol(-1) and DeltaS* approximately -27.3 cal K(-1) mol(-1) for native and DeltaH* approximately 2.7 kcal mol(-1) and DeltaS* approximately -38.9 cal K(-1) mol(-1) for C136A ISA). Instability of the protein-bound cluster precluded a comparison with data from pH and temperature dependencies for the two other Cys derivatives. Experiments to determine the dependence of reaction rate constants on viscosity indicate cluster transfer is rate-limiting. A comparison of cross-species rate constants for cluster transfer to apo Fd targets from Homo sapiens and S. pombe demonstrated that the identity of the Fd is less critical for promoting cluster transfer from Sp ISA (at 25 degrees C, k(2) approximately 170 M(-1) min(-1) for Sp Fd and k(2) approximately 169 M(-1) min(-1) for Hs Fd). This contrasts with an earlier observation for ISU-mediated cluster assembly [Wu, S., et al. (2002) Biochemistry 41, 8876-8885], where the rates differed for Hs and Sp target Fd's, suggesting distinct binding sites for binding of holo ISA and ISU to apo Fd. 相似文献
15.
Gruner I Frädrich C Böttger LH Trautwein AX Jahn D Härtig E 《The Journal of biological chemistry》2011,286(3):2017-2021
The Bacillus subtilis redox regulator Fnr controls genes of the anaerobic metabolism in response to low oxygen tension. An unusual structure for the oxygen-sensing [4Fe-4S](2+) cluster was detected by a combination of genetic experiments with UV-visible and M?ssbauer spectroscopy. Asp-141 was identified as the fourth iron-sulfur cluster ligand besides three Cys residues. Exchange of Asp-141 with Ala abolished functional in vivo complementation of an fnr knock-out strain by the mutagenized fnr gene and in vitro DNA binding of the recombinant regulator FnrD141A. In contrast, substitution of Asp-141 with Cys preserved [4Fe-4S](2+) structure and regulator function. 相似文献
16.
Manuela Lotierzo Bernadette Tse Sum Bui Helen K. Leech Andrée Marquet 《Biochemical and biophysical research communications》2009,381(4):487-7963
Biotin synthase (BioB) catalyses the final step in the biosynthesis of biotin. Aerobically purified biotin synthase contains one [2Fe-2S]2+ cluster per monomer. However, active BioB contains in addition a [4Fe-4S]2+ cluster which can be formed either by reconstitution with iron and sulfide, or on reduction with sodium dithionite. Here, we use EPR spectroscopy to show that mutations in the conserved YNHNLD sequence of Escherichia coli BioB affect the formation and stability of the [4Fe-4S]1+ cluster on reduction with dithionite and report the observation of a new [2Fe-2S]1+ cluster. These results serve to illustrate the dynamic nature of iron-sulfur clusters in biotin synthase and the role played by the protein in cluster interconversion. 相似文献
17.
18.
Lee M Gräwert T Quitterer F Rohdich F Eppinger J Eisenreich W Bacher A Groll M 《Journal of molecular biology》2010,404(4):600-610
IspG protein serves as the penultimate enzyme of the recently discovered non-mevalonate pathway for the biosynthesis of the universal isoprenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. The enzyme catalyzes the reductive ring opening of 2C-methyl-d-erythritol 2,4-cyclodiphosphate, which affords 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. The protein was crystallized under anaerobic conditions, and its three-dimensional structure was determined to a resolution of 2.7 Å. Each subunit of the c2 symmetric homodimer folds into two domains connected by a short linker sequence. The N-terminal domain (N domain) is an eight-stranded β barrel that belongs to the large TIM-barrel superfamily. The C-terminal domain (C domain) consists of a β sheet that is flanked on both sides by helices. One glutamate and three cysteine residues of the C domain coordinate a [4Fe-4S] cluster. Homodimer formation involves an extended contact area (about 1100 Å2) between helices 8 and 9 of each respective β barrel. Moreover, each C domain contacts the N domain of the partner subunit, but the interface regions are small (about 430 Å2). We propose that the enzyme substrate binds to the positively charged surface area at the C-terminal pole of the β barrel. The C domain carrying the iron-sulfur cluster could then move over to form a closed conformation where the substrate is sandwiched between the N domain and the C domain. This article completes the set of three-dimensional structures of the non-mevalonate pathway enzymes, which are of specific interest as potential targets for tuberculostatic and antimalarial drugs. 相似文献
19.
The [4Fe-4S] cluster of quinolinate synthase from Escherichia coli: investigation of cluster ligands
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity. 相似文献
20.
Unciuleac MC Chandramouli K Naik S Mayer S Huynh BH Johnson MK Dean DR 《Biochemistry》2007,46(23):6812-6821
Genetic experiments have established that IscU is involved in maturation of [Fe-S] proteins that require either [2Fe-2S] or [4Fe-4S] clusters for their biological activities. Biochemical studies have also shown that one [2Fe-2S] cluster can be assembled in vitro within each subunit of the IscU homodimer and that these clusters can be reductively coupled to form a single [4Fe-4S] cluster. In the present work, it is shown that the [4Fe-4S] cluster-loaded form of A. vinelandii IscU, but not the [2Fe-2S] cluster-loaded form, can be used for intact cluster transfer to an apo form of A. vinelandii aconitase A, a member of the monomeric dehydratase family of proteins that requires a [4Fe-4S] cluster for enzymatic activity. The rate of [4Fe-4S] cluster transfer from IscU to apo-aconitase A was not affected by the presence of the HscA/HscB co-chaperone system and MgATP. However, an altered form of a [4Fe-4S] cluster-containing IscU, having the highly conserved aspartate-39 residue substituted with alanine, is an effective inhibitor of wild-type [4Fe-4S] cluster-loaded IscU-directed activation of apo-aconitase A. In contrast, neither the clusterless form of IscU nor the [2Fe-2S] cluster-loaded form of IscU is an effective inhibitor of IscU-directed apo-aconitase A activation. These results are interpreted to indicate that the [2Fe-2S] and [4Fe-4S] cluster-loaded forms of IscU adopt different conformations that provide specificity with respect to the maturation of [2Fe-2S] and [4Fe-4S] centers in proteins. 相似文献