首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anion-exchange is the most popular chromatography technique in plasmid DNA purification. However, poor resolution of plasmid DNA from RNA often results in the addition of bovine-derived ribonuclease (RNase) A to degrade RNA impurities which raises regulatory concerns for the production of pharmaceutical-grade plasmid DNA. Low capacity for plasmid of most commercial media is another issue affecting the suitability of anion-exchange chromatography for large-scale processing. This study reports the use of anion-exchange chromatography to remove RNA in an RNase-free plasmid purification process. Resolution was achieved through careful selection of adsorbent and operating conditions as well as RNA reduction steps before chromatography. Dynamic capacity for plasmid was significantly increased (to 3.0mg/ml) so that it is now possible to envisage the large-scale manufacturing of therapeutic-grade plasmid DNA in the absence of added RNase using anion-exchange chromatography as a polishing step.  相似文献   

2.
A high-throughput protein purification strategy using the polycationic Z(basic) tag has been developed. In order for the strategy to be useful both for soluble and less soluble proteins, a denaturating agent, urea, was used in all purification steps. First, four target proteins were genetically fused to the purification tag, Z(basic). These protein constructs were purified by cation exchange chromatography and eluted using a salt gradient. From the data achieved, a purification strategy was planned including stepwise elution to enable parallel protein purification using a laboratory robot. A protocol that includes all steps, equilibration of the chromatography resin, load of sample, wash, and elution, all without any manual handling steps, was handled by the laboratory robot. The program allows automated purification giving milligram amounts of pure recombinant protein of up to 60 cell lysates. In this study 22 different protein constructs, with different characteristics regarding pI and solubility, were successfully purified by the laboratory robot. The data show that Z(basic) can be used as a general purification tag also under denaturating conditions. Moreover, the strategy enables purification of proteins with different pI and solubility using ion exchange chromatography (IEXC). The procedure is highly reproducible and allows for high protein yield and purity and is therefore a good complement to the commonly used His(6)-tag.  相似文献   

3.
Multimodal chromatography is widely used for isolation of proteins because it often results in improved selectivity compared to conventional separation resins. The binding potential and chromatographic behavior of plasmid DNA have here been examined on a Capto Adhere resin. Capto Adhere is a recent multimodal chromatography material allowing molecular recognition between the ligand and target molecule, which is based on combined ionic and aromatic interactions. Capto Adhere proved to offer a very strong binding of nucleic acids. This property could be used to isolate plasmid DNA from a crude Escherichia coli extract. Using a stepwise NaCl gradient, pure plasmid DNA could be obtained without protein and endotoxin contaminations. The RNA fraction bound most strongly to the resin and could be eluted only at very high salt concentrations (2.0 M NaCl). The chromatographic separation behavior was very robust between pH values 6 and 9, and the dynamic binding capacity was estimated to 60 µg/ml resin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Chromatographic methods have been used to purify the DNA of plasmid RP1. DNA was purified in two stages. DNA was precipitated by ethanol and separated from RNA and proteins in Sepharose 4B column after lysis of plasmid containing cells by alkaline solution of sodium dodecylsulphate. Separation of the total DNA preparation and isolation of plasmid DNA was achieved at the second stage by chromatography on the hydroxyapatite column. The resulting purified plasmid DNA was free of RNA, protein and linear fragments of chromosomal DNA. The plasmid DNA kept intact native structure and possessed the transforming activity. The DNA of RP1 yield after purification by the described technique presented 70-80 micrograms per g of wet biomass.  相似文献   

5.
The key step in the purification of a deoxyribonuclease (DNase) from extracts of cod (Gadus morhua L.) pyloric caeca, is the selective retention of the enzyme by anion exchange chromatography. The cod DNase purification on Q-Sepharose Fast Flow (Pharmacia) was optimized, using a 60 ml fixed-bed column. In combination with titration curve analysis, we have screened the effect of buffer pHs, feed conductivity and protein loading, on the product recovery and purity. We have developed elution conditions which allow effective separation of the cod DNase from bounded impurities, such as proteinases and nucleic acids. Low levels of these impurities were regarded as essential for the desired product quality. The optimum resolution and maximum purification (ca. 20-fold increase in specific activity) of DNase, was, however, achieved at low protein loading (2.6 mg ml-1 gel), corresponding to less than 4% of the dynamic bed capacity. Scale-up to a 2.5 l pilot scale column (axial flow) and a 0.25 l radial flow column showed that the separation and yield obtained at laboratory scale was retained, and was independent of column geometry and bed height. The implications for a production scale scenario of 100 g of fractionated protein, are also discussed, as well as process hygiene. The optimization described herein adds further knowledge to the treatment of fish waste and the downstream processing of valuable biochemicals from marine raw material.  相似文献   

6.
7.
A procedure for rapid isolation of monosialogangliosides from purified bovine brain gangliosides has been developed. It utilizes the selective difference in association between monosialogangliosides and polysialogangliosides for the ion-exchange resin Q-Sepharose. When the ion-exchange column is overloaded with a bovine brain ganglioside mixture in the proper ganglioside to column bed-volume ratio, the polysialogangliosides are selectively retained by the column while the monosialogangliosides emerge with the void volume without the use of salt for elution. With the critical ganglioside to bed-volume ratio (1 g:8.32 ml), and an appropriate column bed-height to column radius ratio of 6.9, monosialogangliosides are reproducibly obtained in high purity with greater than 90% yield. The method has been used at both the analytical and preparative scale. We call this separation technique selective-overload chromatography.  相似文献   

8.
The demand for efficient production methods of plasmid DNA (pDNA) has increased vastly in response to rapid advances in the use of pDNA in gene therapy and in vaccines since the advantageous safety concerns associated with non-viral over viral vectors.A prerequisite for the success of plasmid-based therapies is the development of cost-effective and generic production processes of pDNA. However, to satisfy strict regulatory guidelines, the material must be available as highly purified, homogeneous preparations of supercoiled circular covalently closed (ccc) pDNA. Large-scale production of pDNA for therapeutic use is a relatively new field in bioprocessing. The shift from small-scale plasmid production for cell transfection to large-scale production sets new constraints on the bacterial fermentation, processing of bacterial lysate and final purification and formulation of the plasmid DNA. The choice of bacterial strain used for plasmid cultivation affects the plasmid yield, the proportion of different isoforms and the amount of endotoxins in the starting material. The choice of bacterial strain will be greatly influenced by the production and purification procedures of pDNA. Master and working cell banks need to be characterised and established. Alkaline lysis of the bacteria damages the pDNA, resulting in a reduced recovery of ccc pDNA and an increase in partially denaturated ccc pDNA and open circular (oc) forms. Shear stress in these processes needs to be tightly controlled, and buffer composition and pH need to be optimised. To obtain a homogeneous plasmid DNA preparation, different pDNA purification strategies aim at capturing ccc pDNA and eliminating the oc isoform. A highly purified final product corresponding to the stringent recommendations set forth by health and regulatory authorities can be achieved by (i). different chromatography techniques integrated with ultra/diafiltration to achieve optimal purification results; (ii). the formulation of the final pDNA product, that requires a detailed study of the plasmid structure; and (iii). the development of sensitive analytical methods to detect different impurities (proteins, RNA, chromosomal DNA, and endotoxins). We present here a revue of the whole process to obtain such a plasmid DNA, and report an example of RNAse-free purification of ccc pDNA that could be used for gene therapy.  相似文献   

9.
The aim of this study was to develop a simple and rapid method for purification of ultrapure supercoiled plasmid DNA with high yields from bacterial cultures. Nanosized superparamagnetic nanoparticles (Fe3O4) were prepared by chemical precipitation method using Fe2+, Fe3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe3O4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transformation infrared spectroscopy and superconducting quantum interference device magnetometer. The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 35 microg of high-purity (A260/A280 ratio=1.87) plasmid DNA was isolated from 3ml of overnight bacterial culture. EGFP expression was detected by fluorescent microscopy in the transformed E. coli cells, indicating the biological activities of DNA fragments were retained after purified from magnetic nanobeads. The protocol, starting from the preparation of bacterial lysate and ending with purified plasmids takes less than 10 min. Thus, the separation and purification qualities of PEI-modified magnetic nanobeads as well as its ease of use surpass those of conventional anion-exchange resins.  相似文献   

10.
Membrane separation and chromatographic technologies are regarded as an attractive alternative to conventional academic small-scale ultracentrifugation procedures used for retrovirus purification. However, despite the increasing demands for purified retroviral vector preparations, new chromatography adsorbents with high specificity for the virus have not been reported. Heparin affinity chromatography is presented here as a novel convenient tool for retrovirus purification. The ability of bioactive retroviral particles to specifically bind to heparin ligands immobilized on a chromatographic gel is shown. A purification factor of 63 with a recovery of 61% of functional retroparticles was achieved using this single step. Tentacle heparin affinity supports captured retroviral particles more efficiently than conventional heparin affinity chromatography supports with which a lower recovery was obtained (18%). Intact, infective retroviral particles were recovered by elution with low salt concentrations (350 mM NaCl). Mild conditions for retrovirus elution from chromatographic columns are required to preserve virus infectivity. VSV-G pseudotyped retroviruses have shown to be very sensitive to high ionic strength, losing 50% of their activity and showing membrane damage after a short exposure to 1M NaCl. We also report a complete scaleable downstream processing scheme for the purification of MoMLV-derived vectors that involves sequential microfiltration and ultra/diafiltration steps for virus clarification and concentration respectively, followed by fractionation by heparin affinity chromatography and final polishing by size-exclusion chromatography. Overall, by using this strategy, a 38% yield of infective particles can be achieved with a final purification factor of 2,000.  相似文献   

11.
A methodological approach is described which allows the isolation of hydrophobic and hydrophilic proteins and peptides in high yield. The technique consists of (1) preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (2) protein elution from polyacrylamide gels with an organic solvent mixture composed of formic acid/acetonitrile/isopropanol/H2O (50/25/15/10, v/v/v/v), and (3) purification of eluted proteins by size exclusion chromatography on a Superose 12 column using this organic solvent mixture as eluant. The efficiency of this technique was tested with radioactively labeled polypeptides. These proteins were reaction center from Chloroflexus aurantiacus, bacteriorhodopsin, halorhodopsin from Halobacterium halobium, bovine serum albumin, ovalbumin, alpha-chymotrypsinogen A, and cytochrome c. The elution recoveries from polyacrylamide gels were 77-95%; the final yield after chromatographic purification was still 67-76% (with one exception). Subsequent amino acid sequencing was possible without further sample treatment. The sensitivity of the method described was found to be at least 20-30 micrograms protein.  相似文献   

12.
Phycoerythrins have been widely used in food, cosmetics, immunodiagnostics and analytical reagents. An efficient one-step chromatography method for purification of R-phycoerythrins from Polysiphonia urceolata was described in this paper. Pure R-phycoerythrin was obtained with an absorbance ratio A(565)/A(280) of 5.6 and a high recovery yield of 67.33% using a DEAE-Sepharose Fast Flow chromatography with a gradient elution of pH, alternative to common gradient elution of ionic strength. The absorption spectrum of R-phycoerythrin was characterized with three absorbance maxima at 565, 539 and 498 nm, respectively and the fluorescence emission spectrum at room temperature was measured to be 580 nm. The results of native-PAGE, and SDS-PAGE showed no contamination by other proteins in the phycoerythrin solution, which suggests an efficient method for the separation and purification of R-phycoerythrins from Polysiphonia urceolata.  相似文献   

13.
Use of plasmid DNA (pDNA) in the emerging gene therapy requires pure DNA in large quantities requiring production of safe DNA on large scale. While a number of kit-based DNA purification techniques have become popular, large scale cost effective purification of DNA remains a technological challenge. Most traditional, as well as newly developed methods for DNA purification are expensive, tedious, use toxic reagents, and/or generally not amenable for scaled up production. Our attempts to develop a scalable adsorptive separation technology resulted in successful use of indigenously developed rigid cross-linked cellulose beads for single step purification of pDNA from alkaline cell lysates. This mode of purification employs a combination of intra-particle interactions that could give a product plasmid DNA free from chromosomal DNA, RNA and host proteins in a single scalable chromatographic step. The technology can be employed as a batch adsorption step on small scale, or on a large scale column chromatography. A high copy number 9.8 kb plasmid (from an Escherichia coli strain) was purified in yields of 77 and 52%, respectively in batch and column modes. The product obtained was homogeneous supercoiled plasmid with no RNA and protein contamination confirmed by quantitative analysis, agarose gel electrophoresis and SDS-PAGE.  相似文献   

14.
Nucleocapsid (N) protein of Nipah virus (NiV) is a potential serological marker used in the diagnosis of NiV infections. In this study, a rapid and efficient purification system, HisTrap? 6 Fast Flow packed bed column was applied to purify recombinant histidine-tagged N protein of NiV from clarified feedstock. The optimizations of binding and elution conditions of N protein of NiV onto and from Nickel Sepharose? 6 Fast Flow were investigated. The optimal binding was achieved at pH 7.5, superficial velocity of 1.25 cm/min. The bound N protein was successfully recovered by a stepwise elution with different concentration of imidazole (50, 150, 300 and 500 mM). The N protein of NiV was captured and eluted from an inlet N protein concentration of 0.4 mg/ml in a scale-up immobilized metal affinity chromatography (IMAC) packed bed column of Nickel Sepharose? 6 Fast Flow with the optimized condition obtained from the method scouting. The purification of histidine-tagged N protein using IMAC packed bed column has resulted a 68.3% yield and a purification factor of 7.94.  相似文献   

15.
This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA‐induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high‐molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host–cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15–25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5–1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA‐based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1515–1525, 2015  相似文献   

16.
A procedure for the removal of RNA and RNA fragments from large quantities of pBR322 plasmid DNA without the use of RNase is described. Sephacryl S-300 is employed for the separation of low-molecular-weight RNA from plasmid DNA molecules on the basis of gel filtration. The technique thus circumvents many of the dangers associated with treating plasmid DNA preparations with RNase. The procedure should be generally applicable to the purification of virtually any type of plasmid DNA isolated from a bacterial host.  相似文献   

17.
A rapid and inexpensive method for preparing E. coli plasmid-DNA   总被引:2,自引:0,他引:2  
A simple, rapid and inexpensive scaled up miniprep procedure for preparing pure E. coli plasmid DNA is described. Bacterial cells were subjected to the boiling procedure and high molecular weight RNA was removed by LiCl-precipitation. Residual RNA and proteins were removed by subsequent treatment with RNase A and proteinase K/SDS respectively, followed by Sephadex G-50 and Sepharose 6B-Cl chromatography. The average yield from a 100 ml over-night bacterial suspension was 100 to 150 micrograms for pBR-322 DNA, and 250-500 micrograms for SP-6 derived recombinant plasmids. In addition, the described "scaled up" preparation does not require CsCl-ethidium bromide centrifugation; pure plasmid DNA can be prepared within 1 to 2 days.  相似文献   

18.
Covalently closed circular DNA can be isolated rapidly from cell lysates in a two-step process. Hydroxylapatite chromatography to prepurify the plasmid DNA from contaminating protein and RNA is followed by a step gradient elution of covalently closed circular (CCC) plasmid DNA from an acridine yellow affinity column. This procedure results in CCC DNA of a purity comparable to that obtained from ethidium bromide-CsCl gradients without lengthy centrifugation and free of contaimination by intercalating dye. Up to 250 μg of CCC pBR 322 can be isolated from 500 ml of bacterial culture in 4–6 h.  相似文献   

19.
The p53 tumor suppressor gene has been widely explored for gene therapy as an alternative to the common treatments. Recently, the supercoiled conformation of a p53-encoding plasmid proved to be more efficient in cell transfection and protein expression than the open circular conformation. To successfully isolate this isoform, several chromatographic techniques have been used, namely affinity chromatography with amino acids as ligands. However, the study of new matrices and ligands with higher specificity and robustness for supercoiled plasmid purification is still required. The present work explores for the first time a new matrix of l-methionine–agarose to efficiently purify the supercoiled p53-encoding plasmid. The binding/elution conditions, such as salt concentration and temperature, were manipulated and combined to attain the best strategy. Therefore, the supercoiled plasmid isoform was purified from a clarified lysate by using a decreasing stepwise gradient comprising 2.35 and 1.7 M ammonium sulfate in 10 mM Tris–HCl, pH 8.0, and finally 10 mM Tris–HCl, pH 8.0, at 5 °C. After accomplishing the purification process, we performed several tests to assess the quality of the supercoiled plasmid, revealing that the amounts of proteins, gDNA, RNA, and endotoxins were significantly reduced or undetectable in the final formulation.  相似文献   

20.
The procedure of Yuan et al. (1988, Biochem. Biophys. Res. Commun. 154, 111-117) for the isolation of potato pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) has been modified so that a high yield of homogeneous enzyme could be obtained. Modifications included a lower temperature heat step, a lower percentage initial polyethylene glycol fractionation step (0 to 4%, w/v), stepwise elution following an increase from 30 to 50 mM pyrophosphate during affinity chromatography on Whatman P11 phosphocellulose, anion-exchange chromatography using Q-Sepharose "Fast Flow," and gel filtration chromatography with Superose 6 "Prep grade." Our procedure resulted in an overall 42% yield and a final specific activity of 87 mumol fructose 1,6-bisphosphate produced per minute per milligram protein. Rabbit anti-(potato PFP) polyclonal antibodies effectively immunoprecipitated the activity of both the pure enzyme and the enzyme from a crude extract. Western blot analysis demonstrated that the antibodies were monospecific for PFP. A survey of various potato cultivars demonstrated significant differences in PFP activity with respect to fresh weight. This observation should be taken into consideration before any purification of potato PFP is undertaken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号