首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In natural populations on Isle Royale, tadpoles of the chorus frog live in small pools on the shore of Lake Superior. Hatchling densities are high and sufficient to cause competitive impact on survivorship, growth, and development. The temporal and spatial pattern of egg laying indicates that tadpoles in many of the pools belong to single sibships. I calculated average coefficients of relationship among tadpoles under the assumption that eggs laid together are the products of the same breeding pair; the coefficients indicate that relationship among competing larvae averages approximately 0.35, and varies widely among larval subpopulations, from less than 0.1 to about 0.5. Two growth experiments were carried out in pens to test whether growth trajectories and larval characteristics at metamorphosis are influenced by relationship among competing tadpoles. In both experiments, initial density was crossed with average relationship; relationship was controlled by varying the number of sibships per pen from one to four. The same sibships were used in both experiments, but one experiment had lower initial densities and less water volume per pen than the other. In both experiments, density reduced growth, developmental rate, size at metamorphosis, survivorship to the onset of metamorphosis, and the proportion of survivors which actually attained metamorphosis by the end of the experiment. Kin effects occurred only in the experiment carried out in small pens at high initial densities: in this experiment, pure sib populations grew faster, and a higher proportion attained metamorphosis. However, there were no kin effects on larval period or body size at metamorphosis. The chorus frog appears to have a population structure conducive to kin-group selection. Furthermore, high variance in the average coefficient of relationship among pools should favor kin recognition and kin-specific interference behavior. The growth experiments suggest that the tadpoles respond to the genetic relationship of competitors, with significant effects on the distribution of fitness at metamorphosis among members of the group.  相似文献   

2.
The energetics of endotrophic development, where the nutrition required to complete metamorphosis is provided solely by yolk, has seldom been quantified. The energy cost of development to metamorphosis of the endotrophic Australian frog Geocrinia vitellina was measured using bomb calorimetry and closed-system respirometry. Dry yolk had an energy density of 26.4 J x mg(-1), and an average 2.8-mm-diameter ovum contained 144 J. Incubation at 15 degrees C produced a froglet of 5.8 mm snout-vent length, containing 88 J in 87 d, with 11% of residual yolk in the gut, which is markedly less than the 50% recorded in another endotroph, Eleutherodactylus coqui. Geocrinia vitellina lost 56 J of metabolic energy during development to metamorphosis at 15 degrees C, and the total production efficiency was 61.0%. A review of published egg energy densities found a mean for amphibians of 25.1 kJ x g(-1), significantly lower than the mean of 27.1 kJ x g(-1) for reptiles. Moreover, available amphibian data suggest that endotrophic species have high yolk energy densities and low mass-specific rates of oxygen consumption relative to exotrophic species (with feeding larvae); consequently, large ovum size may not necessarily be prerequisite for endotrophic development.  相似文献   

3.
Effects of density and kinship on growth and metamorphosis in tadpoles ofRana temporalis were studied in a 2×4 factorial experiment. Fifteen egg masses were collected from streams in the Western Ghat region of south India. The tadpoles were raised as siblings or in groups of non-siblings at increasing density levels, viz. 15, 30, 60 and 120/5 l water. With an increase in density level from 15 to 120 tadpoles/5 l water, duration of the larval stage increased and fewer individuals metamorphosed irrespective of whether they belonged to sibling or non-sibling groups by day 100 when the experiments were terminated. The size of individuals at metamorphosis declined significantly with increase in the density of rearing. However, at higher densities (60 and 120 tadpoles/5 l water) sibling group tadpoles performed better compared to mixed groups and took significantly less time to metamorphose. Also, more individuals of sibling groups metamorphosed compared to non-sibling groups at a given density. Mixed rearing retarded growth rates, prolonged larval duration resulting in a wider spectrum of size classes, and lowered the number of individuals recruited to terrestrial life. The study shows that interference competition occurred more strongly in cohorts of mixed relatedness than in sibling groups.  相似文献   

4.
Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad ( Pelobates cultripes ) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern observed in adult body size. Larvae from eight populations were raised in a common garden experiment at two different larval densities that allow to differentiate whether population divergence was genetically based or was simply a reflection of environmental variation and, in addition, whether this population divergence was modulated by differing crowding larval environments. Larger adult size populations had higher larval growth rates, attaining larger sizes at metamorphosis, and exhibited higher survival than smaller-sized populations at both densities, although accentuated at a low larval density. These population differences appeared to be consistent once embryo size variation was controlled for, suggesting that this phenotypic divergence is not due to maternal effects. Our results suggest considerable genetic differentiation in metamorphic traits that parallels and may be a causal determinant of geographic variation in adult body size.  相似文献   

5.
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.  相似文献   

6.
Summary We examined the interactions of an abiotic factor (pH) and a biotic factor (density) on the survival and growth of two species of anuran larvae (Hyla gratiosa and Hyla femoralis) in outdoor tanks. Three levels of pH (4.3, 4.6, or 6.0) and three levels of density (0, 30 or 60 embryos) were arranged in a blocked design and replicated three times for Hyla gratiosa. At the end of this experiment the effects of pH (4.3, 4.6, or 6.0), density of H. femoralis (30 or 60), and prior use by H. gratiosa (at 0, 30, or 60 larvae per tank) on the survival and growth of H. femoralis, were examined. Higher density increased larval period and decreased size at metamorphosis of H. gratiosa. Lower pH decreased survival rate and also decreased size at metamorphosis. Body sodium concentrations were lowest at the low pH values. Lower pH increased the susceptibility of H. gratiosa tadpoles to the adverse effects of higher densities. For H. femoralis higher density decreased survival, increased larval period and decreased size at metamorphosis. Hyla femoralis also had lower survivorship at low pH and exhibited decreased size at metamorphosis. However, unlike the results with Hyla gratiosa, there were no interactive effects between pH and density for any of the life-history traits studied. The effect of previous colonization by H. gratiosa on H. femoralis survival was facilitative. Body sodium concentrations of H. femoralis were lowest at the highest pH value. Metamorphs of the same size had much lower levels of sodium in H. femoralis than H. gratiosa. In general, H. femoralis was less affected by pH variation than H. gratiosa. These results demonstrate that abiotic factors can interact strongly with biotic effects such as density and they suggest that interspecific interactions can be strongly modulated by the background abiotic environment.  相似文献   

7.
Abstract Plasticity in growth, reproductive energy allocation (RA), and reproductive output were investigated in Helianthus annuus L. cultivar. Russia (Compositae) grown under varying densities and soil nitrogen levels. The role and behaviour of pollinators in seed production was also examined.
Exceedingly marked plastic responses were detected in individual biomass, the patterns of resource allocation to total reproductive structures (RA) and also to propagules, fecundity, reproductive outputs, and propagule size and weight under changing densities and soil nitrogen levels. Plants cultivated at higher densities exhibited proportionately lower individual biomass, lower RA, lower fecundity, lower seed output, and smaller seed size in response to increasing density and decreasing soil nitrogen levels. However, differences due to different N-levels were not as great as those to changing density.
One of the most significant findings was that seed production under limited resource availability, i.e., lack of ample solar radiation and soil nutrients, due to strong interference at higher density plots, is exceedingly costlty , This was most clearly demonstrated by a very sharp increase in relative energy partitioning to a single propagule in response to the increased density and decreasing nitrogen levels, the relative energy cost to a single achcne (RA) increasing from one to twenty-fourfold. Reproduction was also affected by pollinator-limitations, and seed size showed a marked position effect.  相似文献   

8.
Björn Lardner 《Oecologia》1998,117(1-2):119-126
Tadpoles of Rana arvalis originating from seven island populations were tested for responses to non-lethal predator presence. In general, tadpole growth was reduced and the relative tail depth was increased at predator presence. There was no effect of predator presence on the predicted size at metamorphosis. The differentiation rate, translating as length of the larval period, was lower at predator presence, but this seems to be merely an effect of the reduced growth. Although populations differed with respect to growth, relative tail length, relative tail depth, differentiation rate and predicted size at metamorphosis, no obvious differences were found in their responses to predator presence. Data on predator occurrences in the source ponds show that tadpoles originating from ponds with a high predation pressure have a higher differentiation rate, i.e. they will metamorphose at an earlier date than those from “safe” ponds (if raised under the same conditions). Moreover, they are also predicted to metamorphose at a smaller size, which is in accordance with theoretical models. Despite the fact that populations differed in growth, no correlation was found between growth and predation risk in the source ponds. Received: 16 March 1998 / Accepted: 18 July 1998  相似文献   

9.
Amphibian larvae vary tremendously in size at metamorphosis and length of larval period. We raised pond-dwelling four-toed salamander (Hemidactylium scutatum) larvae to test two models that predict a larva’s age and size at metamorphosis. The Wilbur-Collins model proposes that the developmental rate of a larva responds to changes in growth rate in an adaptive manner throughout the larval period, and that metamorphosis can be initiated after a minimum size has been reached. The Leips-Travis or fixed-rate model states that developmental rate is set early in the larval period, perhaps by early growth rate or food availability and their positive correlation with developmental rate, and that changes in growth rate during the larval period affect size at metamorphosis, but have no effect on the age of an individual at metamorphosis. A modified version of the Wilbur-Collins model suggests that a larva’s developmental rate becomes fixed about two-thirds of the way through the larval period, with changes in growth rate after that point only affecting size at metamorphosis. Larvae were raised on eight different feeding regimes which created two constant and six variable growth histories. Growth history did significantly affect size at metamorphosis. However, an a posteriori statistical test revealed a group of seven and an overlapping group of six treatments with indistinguishable lengths of larval period, indicating a general picture of a fixed developmental rate regardless of growth history. This result is unique among similar studies on invertebrates, fish, and frogs. There was no association between early growth or food level and development rates. Neither the Wilbur-Collins nor the Leips-Travis fixed-rate models were supported. The invariable developmental rate of Hemidactylium and recent osteological evidence from the literature suggest that larvae begin the process of metamorphosis as soon as they hatch, probably a trait selected for by strong predation pressure in the aquatic environment. A variety of different approaches (ecological, developmental, phylogenetic) are necessary to fully evaluate the adaptive nature of the timing of transitions between life cycle stages. Received: 3 June 1999 / Accepted: 18 March 2000  相似文献   

10.
Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.  相似文献   

11.
Summary We conducted experiments in replicated circular streams to measure the effect of intraspecific larval density on growth rates, size at emergence, timing of emergence, and fecundity of two species of predatory stoneflies (Megarcys signata and Kogotus modestus, Perlodidae). Early instars of both species showed no significant effect of intraspecific larval density on mean growth rates, despite the observation that in the absence of competitors stoneflies ate on average, significantly more prey (Baetis bicaudatus, Ephemeroptera, Baetidae) than in the presence of competitors. However, larval size of stoneflies held at higher densities (two per chamber) diverged over time, resulting in a greater size variability (coefficient of variation) among Kogotus than in treatments with low densities of stoneflies (one per chamber). The effect of doubling the density of early-instar Megarcys larvae was also asymmetrical, resulting in one larger and one smaller individual. In contrast, doubling the density of last-instar stoneflies whose feeding rates declined significantly prior to emergence had few measurable consequences, except that male Megarcys, which continued to feed throughout the last instar, had lower average feeding rates in high-density than in low-density chambers, and emerged at a significantly smaller mean size. We conclude that competition between early-instar stonefly larvae results in an asymmetry of body sizes, but that competitive effects are reduced as larvae slow or cease feeding before emergence. Since larger females of both stonefly species produced more eggs, the probable cost to females of early-instar larval competition was a reduction in their potential contribution of offspring to the next generation. The cost of attaining a smaller body size for male stoneflies is unknown; but if, as in many other insects, larger males have greater reproductive success, larval competition may increase the opportunity for sexual selection among males. This hypothesis remains to be tested experimentally.  相似文献   

12.
This study tests the hypothesis that herd accumulation can be a risk reducing strategy aimed at increasing security in an unpredictable environment. Saami reindeer husbandry in Norway is characterized by environmental unpredictability and occasionally harsh winters can have dramatic negative effects on reindeer population densities. While herd accumulation has been found to be an adaptive risk reducing strategy in stochastic environments (i.e., individually rational), the accumulation of large herds may also result in collectively negative density dependent effects, which may negatively affect individual herders (i.e., collectively irrational). We found that individual husbandry units’ strategies, such as accumulating reindeer, have a larger effect on individual husbandry units’ herd size than a negative density-dependent effect.  相似文献   

13.
Summary Although inter- and intraspecific variation in egg size among amphibians has been well documented, the relationship between egg size and fitness remains unclear. Recent attempts to correlate egg size intraspecifically with larval developmental patterns have been equivocal. In this study the development of larvae derived from large eggs and small eggs, from a single population in Maryland were compared under a range of food levels and larval population densities. Both food level and density had significant effects on the length of the larval period and size at metamorphosis. However, the response among larvae derived from different egg sizes was not additive. At low densities and high food levels, larvae from small eggs had longer larval periods and a larger size at metamorphosis than larvae derived from large eggs. In contrast, at high densities larvae from small eggs had longer developmental periods but were smaller at metamorphosis than larvae from large eggs. In addition, larvae from small eggs were more sensitive to density irrespective of food level. These results suggest that optimal egg size is correlated with environmental factors, which may explain the maintenance of both geographic and within population variation in egg size commonly observed in amphibians.  相似文献   

14.
Huss M  Persson L  Byström P 《Oecologia》2007,153(1):57-67
Size variation among individuals born at the same time in a common environment (within cohorts) is a common phenomenon in natural populations. Still, the mechanisms behind the development of such variation and its consequences for population processes are far from clear. We experimentally investigated the development of early within-cohort size variation in larval perch (Perca fluviatilis). Specifically we tested the influence of initial variation, resulting from variation in egg strand size, and intraspecific density for the development of size variation. Variation in egg strand size translated into variation in initial larval size and time of hatching, which, in turn, had effects on growth and development. Perch from the smallest egg strands performed on average equally well independent of density, whereas larvae originating from larger egg strands performed less well under high densities. We related this difference in density dependence to size asymmetries in competitive abilities leading to higher growth rates of groups consisting of initially small individuals under high resource limitation. In contrast, within a single group of larvae, smaller individuals grew substantially slower under high densities whereas large individuals performed equally well independent of density. As a result, size variation among individuals within groups (i.e. originating from the same clutch) increased under high densities. This result may be explained by social interactions or differential timing of diet shifts and a depressed resource base for the initially smaller individuals. It is concluded that to fully appreciate the effects of density-dependent processes on individual size variation and size-dependent growth, consumer feedbacks on resources need to be considered.  相似文献   

15.
Individuals can compete either through direct interference or uptake of limiting resources. If competing individuals are able to recognize their relatives, relatedness of competitors may evoke kin selection, which favours relatively even resource share among relatives. Resource competition is often size-symmetric, i.e. proportional to an individual's biomass, while interference competition is asymmetric giving large individuals a disproportionate advantage over small individuals. Kin-selection is predicted to reduce the intensity of direct interference and competitive asymmetry, leading to increased mean and decreased variation in individual size. We tested these predictions by investigating the effects of relatedness on age and size at metamorphosis in the common frog Rana temporaria tadpoles in a laboratory experiment. We reared related (full- and half-sibs) and unrelated tadpoles of different sizes (small, large, small and large together) at two densities until metamorphosis. Relatedness had little effect on mean growth, but it reduced size variation, as measured with coefficient of variation. Furthermore, there was a significant interaction between relatedness and density in size at metamorphosis, so that relatives always grew better in lower density, but growth was less affected by density among unrelated individuals. This indicates that the effects of relatedness on tadpole performance may be context dependent. Initial size differences in the mixed size treatment evened out during the course of the experiment, and initially small tadpoles were able to compensate the early growth losses, although it took longer for them to reach metamorphosis. We conclude that although relatedness may have rather small effects on the growth and development of R. temporaria tadpoles, it increases the symmetry of resource share decreasing between-individual variation in size at metamorphosis.  相似文献   

16.
Hyla cinerea and H. gratiosa are closely related treefrogs that differ at metamorphosis in the length of the hind limb relative to snout vent length. A developmental series of larvae of the two species raised under uniform laboratory conditions reveals that H. cinerea have proportionately longer legs at metamorphosis than H. gratiosa for the following reasons: 1) Hyla cinerea initiate limb growth at a smaller body size than H. gratiosa, 2) H. cinerea have a faster rate of limb growth, and 3) body growth rates in H. cinerea and H. gratiosa are nearly identical until just before metamorphosis.  相似文献   

17.
Objective: This study describes patterns of bias in self‐reported dietary recall data of girls by examining differences among girls classified as under‐reporters, plausible reporters, and over‐reporters on weight, dietary patterns, and psychosocial characteristics. Research Methods and Procedures: Participants included 176 girls at age 11 and their parents. Girls’ weight and height were measured. Three 24‐hour dietary recalls and responses to psychosocial measures were collected. Plausibility cut‐offs for reported energy intake as a percentage of predicted energy requirements were used to divide the sample into under‐reporters, plausible reporters, and over‐reporters. Differences among these three groups on dietary and psychosocial variables were assessed to examine possible sources of bias in reporting. Results: Using a ±1 standard deviation cut‐off for energy intake plausibility, 50% of the sample was categorized as plausible reporters, 34% as under‐reporters, and 16% as over‐reporters. Weight status of under‐reporters was significantly higher than that of plausible reporters and over‐reporters. With respect to reported dietary intake, under‐reporters were no different from plausible reporters on intakes of foods with higher nutrient densities and lower energy densities and were significantly lower than plausible reporters on intakes of foods with lower nutrient densities and higher energy densities. Over‐reporters reported significantly higher intakes of all food groups and the majority of subgroups, relative to plausible reporters. Under‐reporters had significantly higher levels of weight concern and dietary restraint than both plausible reporters and over‐reporters. Discussion: Techniques to categorize plausible and implausible reporters can and should be used to provide an improved understanding of the nature of error in children's dietary intake data and account for this error in analysis and interpretation.  相似文献   

18.
Abstract Plasticity in growth, reproductive energy allocation (RA), and reproductive output were studied in Glycine max Merr. Cv. Enrei (Leguminosae) grown under varying densities and soil nitrogen levels.
Marked plastic responses were detected in individual biomass, the patterns of resource allocation to total reproductive structures (RA) and also to propagules, reproductive outputs, and propagule weight under changing densities and soil nitrogen levels. Plants cultivated at higher densities exhibited proportionately lower individual biomass, lower RA, lower seed output, and smaller seed size in response to increasing density and decreasing soil nitrogen levels, although some deviations were observed, especially in the highest density plot with no fertilization. Differences due to different N-levels were not as great as those to changing density, which may in part be due to the fact that soybean has nitrogen-fixing bacteria in root tubercles, just as in any other Leguminosae. Fecundity was also maintained at the similar high rates of 80–97% in all plots examined, although slight but steady decreases were noted with increasing density. This resemblance in fecundity may be due to its strong inbreeding system.
Another important finding was that seed production under limited resource availability, notably lack of ample solar radiation due to strong interference at higher density plots, is exceedingly costly. This was most clearly exhibited by a sharp increase in relative energy partitioning to a single propagule in response to the increased density, the relative energy cost to a single propagule (RA) increasing from one to seven-fold. The results obtained in this study coincide well with the findings made in other plants, e.g., Helianthus annuus, Oryza sativa , and Coix ma-yuen , with the same experimental designs.  相似文献   

19.
全球气候变暖引发栖息地干涸将对生活在水中的无尾类幼体提出了挑战。通过浙江丽水中华大蟾蜍(Bufo gargarizans)和黑眶蟾蜍(Duttaphrynus melanosticus)蝌蚪在实验条件下对不同水位变化的表型响应,检测表型可塑性的遗传性和环境近因性影响。结果表明,水位变化对中华大蟾蜍蝌蚪早期发育历期、头宽和体重影响不显著,对体长影响显著,其中逐减水位最大、恒低水位最小,慢波、恒高与快波、逐增水位依次减少;水位变化对黑眶蟾蜍蝌蚪早期发育历期、体长、头宽和体重影响均显著;发育历期以恒高水位最大,恒低水位最小;体长以逐减水位最大,恒低、快波和慢波水位显著偏小,逐增和快波水位居中;头宽以恒低水位最小,逐增水位居中,其余较大;体重以恒低水位最小、恒高水位最大,其余居中。水位变化对中华大蟾蜍蝌蚪的变态时间、体长、头宽和体重影响均不显著;水位变化对黑眶蟾蜍蝌蚪的变态时间、体长和体重影响均显著,对头宽影响不显著;恒低水位的变态时间最长,恒高水位的变态时间最短,其他水位变化之间差异不显著;恒高水位的体长最大,恒低和快波水位最小,其他居中;逐增和快波水位的体重最大,恒低水位最小。研究结果表明,繁殖季节不同的中华大蟾蜍和黑眶蟾蜍蝌蚪响应水位变化的表型可塑性差异显著,长期在容易发生干旱和水位变化的冬季繁殖的中华大蟾蜍蝌蚪的表型可塑性低,在雨水充沛的春季繁殖的黑眶蟾蜍蝌蚪的表型可塑性高,表现出表型可塑性的种间差异和遗传性;在早期发育过程中,两种蝌蚪体长的共同的表型变异与缺乏遗传基础的环境近因性影响有关;黑眶蟾蜍蝌蚪对低水位或水位下降作出减速分化的消极响应,响应程度与环境信号的强弱直接相关。  相似文献   

20.
Hybridogenetic Rana esculenta tadpoles display tolerance to extreme environmental conditions and fit criteria of the “general-purpose” genotype. A trade-off between generality and competitive ability is assumed to occur in asexual species, but the evidence remains unclear. The purpose of my experiment was to test the competitive ability of hemiclonal hybrid Rana esculenta tadpoles relative to the parental species Rana lessonae. Mixed and single genotype populations of R. esculenta and R. lessonae tadpoles were reared at three densities in artificial ponds. Survival of R. esculenta was higher than for R. lessonae tadpoles, but did not differ among densities. Body size at metamorphosis was the same between genotypes, but decreased with increasing density. Larval period was not affected by density, but R. esculenta tended to metamorphose earlier than R. lessonae. Percentage of individuals metamorphosing was higher for R. esculenta at both medium and high densities, but the same as R. lessonae at the low density. The difference in survival, body size, and larval period between tadpoles reared in single and mixed genotype populations was unaffected by genotype or density. The difference in the percentage of metamorphs, however, was strongly affected. The percentage of hybrids metamorphosing was 9% above the responses of single genotype populations at the highest density. Conversely, the percentage of R. lessonae metamorphosing was 12% below the responses of single genotype populations at the same density. Hybrid success in this experiment further supports the criterion of a “general-purpose” genotype without assumptions of reduced competitive ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号