首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
cDNA微阵列和寡核苷酸芯片是常见的合成后点样的DNA微阵列。点样方法主要是通过物理吸附或共价结合的方式将探针固定于载体上,本总结了近年来国内外献报道的cDNA微阵列制备方法;在多聚赖氨酸包被的玻璃基片表面制备cDNA微阵列;用琼脂糖包被的玻璃基片制备cDNA微阵列;在氨基或醛基修饰的玻璃基片表面制备cDNA微阵列;寡核苷酸芯片的制备方法;氨基修饰的玻片与5′末端带氨基的寡核苷酸探针通过不同的linker连接;硅烷化寡核苷酸直接点样于玻片上制成寡核苷酸微阵列;硫代寡核苷酸通过二硫键与巯基修饰的玻片连接;水凝胶芯片固定寡核苷酸。丙烯酰胺硅烷化的基片与5′丙烯酰胺修饰的寡核苷酸连接。并展望了基因芯片的应用前景。  相似文献   

2.
会议由清华大学、生物芯片北京国家工程研究中心、科技部、教育部、国家自然科学基金委员会等单位共同主办,由生物芯片北京国家工程研究中心具体筹办.会议议题主要包括以下内容:1.DNA、蛋白质、细胞及组织微阵列芯片技术;2.微流体芯片和缩微芯片实验室技术;3.生物信息学技术;4.  相似文献   

3.
用于雌二醇检测的免疫芯片技术   总被引:3,自引:0,他引:3  
以卵清白蛋白为载体蛋白合成了雌二醇的结合物用Cy3新型荧光染料标记结合物 ,作为雌二醇的竞争物 ,建立了以竞争法为基础的检测食品中雌二醇的免疫芯片新方法。用生物芯片点样仪在醛基化玻片表面点样制备免疫微阵列 ,以扫描仪检测反应结果 ,对雌二醇进行了定性定量检测。实验结果表明荧光信号随待测物浓度的降低而增强 ,待测物浓度在 0.001~ 0.4μg/ml的范围内有较好的线性趋势 ,检测范围为 1~ 0.001μg/ml。  相似文献   

4.
基因芯片技术筛选家蝇抗菌肽相关基因   总被引:1,自引:0,他引:1  
用生物学软件对GenBank中部分昆虫抗菌肽基因编码区保守域设计探针, 用直接点样法将探针点印在特制玻片上构建寡核苷酸(Oligonucleotide, oligo)探针微阵列; 提取诱导后24 h的家蝇三龄幼虫脂肪体总RNA, 逆转录成cDNA并标记上荧光标记物Cy3, 与构建的oligo探针微阵列杂交, 经洗片、扫描处理后进行数据分析。结果在两次重复实验中均检测到有效杂交信号的基因点有15个(不包括阳性对照基因), 为进一步发现其新基因提供了依据。  相似文献   

5.
基因芯片的制备方法   总被引:7,自引:0,他引:7  
合成后点样的DNA微阵列分析cDNA微阵列和寡核苷酸芯片,点样方法主要是通过物理吸附或共价结合的方式将探针固定于载体上。本文归纳了近年来国内外文献报道的基因芯片的制备方法,展望了基因芯片的应用前景。  相似文献   

6.
检测绵羊BMPR-IB基因多态性寡核苷酸芯片的制备   总被引:1,自引:0,他引:1  
杨华  钟发刚  王新华  刘守仁  朱滨  邢军芬  孙悦 《遗传》2007,29(8):957-962
FecB基因是控制中国美利奴羊排卵率和产羔数的主效基因,由于A746G的点突变而导致绵羊表型的变化。本研究的目的在于根据FecB基因的多态性,制备寡核苷酸芯片检测绵羊FecB基因的单核苷酸多态性(SNP),设计六条特异性的探针,用基因芯片点样仪将探针点样到醛基修饰的载玻片上,采集绵羊的血液样本,在芯片反应舱中,检测FecB基因A746G点突变,设计对应的软件进行判读,分析检测结果,与PCR-RFLP检测结果完全符合,证明制备的寡核苷酸芯片可以并行、准确而高效地检测FecB基因的多态性,能够作为分子标记辅助选育多胎绵羊的一种合适的检测技术。  相似文献   

7.
00 4年1 0月2 1~2 4日,北京中关村生命科学园  会议由清华大学、生物芯片北京国家工程研究中心、科技部、教育部、国家自然科学基金委员会等单位共同主办,由生物芯片北京国家工程研究中心具体筹办.会议议题将主要包括以下内容:(1)DNA、蛋白质、细胞及组织微阵列芯片技术;(2 )微流体芯片及缩微芯片实验室技术;(3)芯片药物筛选技术;(4)生物信息学技术.会议已邀请到三十余位国际上最具权威性的生物芯片专家来做大会特邀报告,其中既有从事生物芯片前沿性探索研究的科研院校的著名教授,也有从事生物芯片研发的知名商业公司的总裁或部门经理,…  相似文献   

8.
应用了以硒化镉量子点为荧光探针,具有磁性和抗体双重靶向功能的聚苯乙烯磁微球.设计了基于此种磁微球的新型微悬臂梁式免疫传感器,满足在液相环境中,借助嵌入到聚苯乙烯磁微球的荧光探针及微球表面的特异性抗体探针,达到生物分子的定性检测,借助具有纳米机械响应的微悬臂梁及微平面电感线圈,达到生物分子的定量检测及传感器的复用性,解决传统微悬臂梁式免疫传感器的不足.着重对三种粒径尺寸的硒化镉量子点进行了表征,同时针对片上磁分离的机理,梁上微电感线圈的结构,微磁场对磁微球的吸引进行了研究,设计并优化出满足新型微悬臂梁式免疫传感器所需的蛇形微平面电感线圈.通过生物磁分离实验,验证了设计及优化的结果,实现了用于生物分子分离的片上磁分离技术.  相似文献   

9.
生物芯片技术与食品分析   总被引:11,自引:0,他引:11  
生物芯片检测技术是一种全新的微量分析技术。本文综述了生物芯片基本技术流程包括方阵构建、样品制备、化学反应和结果检测 ;探讨了生物芯片技术在食品分析中的应用前景 ;分析了生物芯片应用的技术障碍 ,旨在为生物芯片应用发展提供理论基础。  相似文献   

10.
DNA微阵列(或芯片)技术原理及应用   总被引:13,自引:0,他引:13  
DNA微阵列或芯片(DNA microarray or chip)技术是近年发展起来的又一新的分子生物学研究工具.它是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸探针,或将液相合成的探针由微阵列器或机器人点样于尼龙膜或硅片上,再与放射性同位素或荧光物标记的DNA或cDNA杂交,用于分析DNA突变及多态性、DNA测序、监测同一组织细胞在不同状态下或同一状态下多种组织细胞基因表达水平的差异、发现新的致病基因或疾病相关基因等多个研究领域.  相似文献   

11.
The advent of micro/nanotechnology has blurred the border between biology and materials science. Miniaturization of chemical and biological assays, performed by use of micro/nanofluidics, requires both careful selection of the methods of fabrication and the development of materials designed for specific applications. This, in turn, increases the need for interdisciplinary combination of suitable microfabrication and characterisation techniques. In this review, the advantages of combining X-ray lithography, as fabrication technique, with small-angle X-ray scattering measurements will be discussed. X-ray lithography enables the limitations of small-angle X-ray scattering, specifically time resolution and sample environment, to be overcome. Small-angle X-ray scattering, on the other hand, enables investigation and, consequently, adjustment of the nanostructural morphology of microstructures and materials fabricated by X-ray lithography. Moreover, the effect of X-ray irradiation on novel materials can be determined by use of small-angle X-ray scattering. The combination of top-down and bottom-up methods to develop new functional materials and structures with potential in biology will be reported.  相似文献   

12.
Microarray technology is a useful tool for nucleic acid detection and has been widely used in biology and related research fields. However, the procedure is labor intensive and time consuming. Microfluidic chip-based microarrays save time with better performance, but the low spot density and probe number limit its applications. To develop high performance microarrays with high spot density within a microchannel, a method is reported here for preparing microarrays in a capillary by generating probe droplet arrays. The probes in droplets are immobilized onto the inner wall of the capillary to form a one-dimensional probe array, and then a sample solution is introduced to hybridize with the probe array. The effect of the capillary's inner diameter was evaluated to realize a high-density probe array. The processes of array generation and probe immobilization were studied to avoid possible cross contamination. The background from probe immobilization during the array generation and incubation was quantified to assure sensitivity. Multiple sample detection was also demonstrated within one capillary. The capillary based microarray assay had high spot density, easy fabrication, fast detection, high sensitivity and multiple sample capacity.  相似文献   

13.
Huan B  Van Atta R  Cheng P  Wood ML  Zychlinsky E  Albagli D 《BioTechniques》2000,28(2):254-5, 258-60
In situ hybridization techniques have been an important research tool since first introduced 30 years ago, and more recently clinical applications have been expanding greatly. Still, further improvements in the assay sensitivity and protocols that are amenable to routine clinical use are desired. We use a novel photo-cross-linking technology to irreversibly bind short oligonucleotide probes to the target sequence following a hybridization period. The cross-linking agent is incorporated into the backbone of the probe and is activated to react with pyrimidines in the opposite strand by near-UV (300-370 nm) irradiation. By locking the probe to the target, very stringent wash conditions can be used that would otherwise completely remove probes that are hybridized but not cross-linked to the target. Consequently, the probe-specific signal is maximized, while the background signal is minimized to the greatest extent possible with the stringency of the wash. The use of short, photo-cross-linkable probes presents a new strategy for maximizing the sensitivity of probe hybridization or signal amplification-based in situ techniques.  相似文献   

14.
采用热压印光刻技术制备了一种多金属构成、带数字标识图形的悬浮微块,其中的镍层与金层可分别实现微块的磁控靶向与生物探针的联接。借助微块表面的数字微通孔标识符号,实现了微块的生物探针编码;用异硫氰酸荧光素荧光标记编码的悬浮微块,通过悬浮微块的多组分并行免疫荧光检测,实现了微块的生物探针解码及生物分子的定量检测。这种编码的地址数取决于微块表面的微通孔数,理论上可以成千上万。因此,表面经过生物探针修饰的悬浮微块是建立生物分子编码库的理想途径,可作为基于高通量悬浮阵列技术的免疫分析平台。  相似文献   

15.
As a novel therapeutic application of microfabrication technology, a micromachined membrane-based biocapsule is described for the transplantation of protein-secreting cells without the need for immunosuppression. This new approach to cell encapsulation is based on microfabrication technology whereby immunoisolation membranes are bulk and surface micromachined to present uniform and well-controlled pore sizes as small as 10 nm, tailored surface chemistries, and precise microarchitecture. Through its ability to achieve highly controlled microarchitectures on size scales relevant to living systems (from microm to nm), microfabrication technology offers unique opportunities to more precisely engineer biocapsules that allow free exchange of the nutrients, waste products, and secreted therapeutic proteins between the host (patient) and implanted cells, but exclude lymphocytes and antibodies that may attack foreign cells. Microfabricated inorganic encapsulation devices may provide biocompatibility, in vivo chemical and mechanical stability, tailored pore geometries, and superior immunoisolation for encapsulated cells over conventional encapsulation approaches. By using microfabrication techniques, structures can be fabricated with spatial features from the sub-micron range up to several millimeters. These multi-scale structures correspond well with hierarchical biological structures, from proteins and sub-cellular organelles to the tissue and organ levels.  相似文献   

16.
为制备用地高辛精(Digoxigenin,Dig)标记的酶氨酸羟化酶(TyrosineHydroxylase,TH)RNA探针,本研究用分子生物学技术重组质粒PGEMTHI,即分别将携带T7和Sp6启动子的PGEM-3zf质粒和携带TH基因的PKSTH质粒用限制性内切酶消化并行分离纯化,得到带T7和sp6启动子的DNA片段和TH基因片段;经T4DNA连接酶连接后转入大肠杆菌,得到pGEMTH1重组克隆。经小量提取质粒井用酶切分析检测,证实其确有TH基因且方向正确。将此质粒再经限制性内切酶消化则得到线状DNA片段,用T7RNA聚合酶转录合成带有Dig标记的高比活度的单链RNA探针;经斑点杂交试验证实该探针具有较高的可靠性。这将为基因治疗帕金森氏病动物模型的疗效检测提供有效手段。  相似文献   

17.
This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i) reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii) improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS), accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii) given the high spinning rates (tens of kHz) involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz) testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.  相似文献   

18.
Ribosomal RNA-(rRNA)-targeted oligonucleotide probes are widely used for culture-independent identification of microorganisms in environmental and clinical samples. ProbeBase is a comprehensive database containing more than 700 published rRNA-targeted oligonucleotide probe sequences (status August 2002) with supporting bibliographic and biological annotation that can be accessed through the internet at http://www.probebase.net. Each oligonucleotide probe entry contains information on target organisms, target molecule (small- or large-subunit rRNA) and position, G+C content, predicted melting temperature, molecular weight, necessity of competitor probes, and the reference that originally described the oligonucleotide probe, including a link to the respective abstract at PubMed. In addition, probes successfully used for fluorescence in situ hybridization (FISH) are highlighted and the recommended hybridization conditions are listed. ProbeBase also offers difference alignments for 16S rRNA-targeted probes by using the probe match tool of the ARB software and the latest small-subunit rRNA ARB database (release June 2002). The option to directly submit probe sequences to the probe match tool of the Ribosomal Database Project II (RDP-II) further allows one to extract supplementary information on probe specificities. The two main features of probeBase, 'search probeBase' and 'find probe set', help researchers to find suitable, published oligonucleotide probes for microorganisms of interest or for rRNA gene sequences submitted by the user. Furthermore, the 'search target site' option provides guidance for the development of new FISH probes.  相似文献   

19.
DNA microarray technology is a powerful tool for getting an overview of gene expression in biological samples. Although the successful use of microarray-based expression analysis was demonstrated in a number of applications, the main problem with this approach is the fact that expression levels deduced from hybridization experiments do not necessarily correlate with RNA concentrations. Moreover oligonucleotide probes corresponding to the same gene can give different hybridization signals. Apart from cross-hybridizations and differential splicing, this could be due to secondary structures of probes or targets. In addition, for low-copy genes, hybridization equilibrium may be reached after hybridization times much longer than the one commonly used (overnight, i.e., 15 h). Thus, hybridization signals could depend on kinetic properties of the probe, which may vary between different oligonucleotide probes immobilized on the same microarray. To validate this hypothesis, on-chip hybridization kinetics and duplex thermostability analysis were performed using oligonucleotide microarrays containing 50-mer probes corresponding to 10 mouse genes. We demonstrate that differences in hybridization kinetics between the probes exist and can influence the interpretation of expression data. In addition, we show that using on-chip hybridization kinetics, quantification of targets is feasible using calibration curves.  相似文献   

20.
Microarray technology has the potential to affect the number of laboratory animals used, the severity of animal experiments, and the development of non-animal alternatives in several areas scientific research. Microarrays can contain hundreds or thousands of microscopic spots of DNA, immobilised on a solid support, and their use enables global patterns of gene expression to be determined in a single experiment. This technology is being used to improve our understanding of the operation of biological systems during health and disease, and their responses to chemical insults. Although it is impossible to predict with certainty any future trends regarding animal use, microarray technology might not initially reduce animal use, as is often claimed to be the case. The accelerated pace of research as a result of the use of microarrays could increase overall animal use in basic and applied biological research, by increasing the numbers of interesting genes identified for further analysis, and the number of potential targets for drug development. Each new lead will require further evaluation i n studies that could involve animals. In toxicity testing, microarray studies could lead to increases in animal studies, if further confirmatory and other studies are performed. However, before such technology can be used more extensively, several technical problems need to be overcome, and the relevance of the data to biological processes needs to be assessed. Were microarray technology to be used in the manner envisaged by its protagonists, there need to be efforts to increase the likelihood that its application will create new opportunities for reducing, refining and replacing animal use. This comment is a critical assessment of the possible implications of the application of microarray technology on animal experimentation in various research areas, and makes some recommendations for maximising the application of the Three Rs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号