首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to facilitate a novel means for coupling proteins to metal oxides, peptides were identified from a dodecamer peptide yeast surface display library that bound a model metal oxide material, the C, A, and R crystalline faces of synthetic sapphire (alpha-Al(2)O(3)). Seven rounds of screening yielded peptides enriched in basic amino acids compared to the naive library. While the C-face had a high background of endogenous yeast cell binding, the A- and R faces displayed clear peptide-mediated cell adhesion. Cell detachment assays showed that cell adhesion strength correlated positively with increasing basicity of expressed peptides. Cell adhesion was also shown to be sensitive to buffer ionic strength as well as incubation with soluble peptide (with half maximal inhibition of cell binding at approximately 5 microM peptide). Next, dodecamer peptides cloned into yeast showed that lysine led to stronger interactions than arginine, and that charge distribution affected adhesion strength. We postulate binding to arise from peptide geometries that permit conformation alignment of the basic amino acids towards the surface so that the charged groups can undergo local electrostatic interactions with the surface oxide. Lastly, peptide K1 (-(GK)(6)) was cloned onto the c-terminus of maltose binding protein (MBP) and the resultant mutant protein showed a half-maximal binding at approximately 10(-7)-10(-6) M, which marked a approximately 500- to 1,000-fold binding improvement to sapphire's A-face as compared with wild-type MBP. Targeting proteins to metal oxide surfaces with peptide tags may provide a facile one-step alternative coupling chemistry for the formation of protein bioassays and biosensors.  相似文献   

2.
Kaga C  Okochi M  Tomita Y  Kato R  Honda H 《BioTechniques》2008,44(3):393-402
We developed a method of effective peptide screening that combines experiments and computational analysis. The method is based on the concept that screening efficiency can be enhanced from even limited data by use of a model derived from computational analysis that serves as a guide to screening and combining the model with subsequent repeated experiments. Here we focus on cell-adhesion peptides as a model application of this peptide-screening strategy. Cell-adhesion peptides were screened by use of a cell-based assay of a peptide array. Starting with the screening data obtained from a limited, random 5-mer library (643 sequences), a rule regarding structural characteristics of cell-adhesion peptides was extracted by fuzzy neural network (FNN) analysis. According to this rule, peptides with unfavored residues in certain positions that led to inefficient binding were eliminated from the random sequences. In the restricted, second random library (273 sequences), the yield of cell-adhesion peptides having an adhesion rate more than 1.5-fold to that of the basal array support was significantly high (31%) compared with the unrestricted random library (20%). In the restricted third library (50 sequences), the yield of cell-adhesion peptides increased to 84%. We conclude that a repeated cycle of experiments screening limited numbers of peptides can be assisted by the rule-extracting feature of FNN.  相似文献   

3.
To facilitate the construction, functional characterization, and use of immunoadsorbents, we have developed a flow cytometry method that allows rapid assessment of large numbers of particle-bound antibodies. Protein G derivitized POROS beads were used to bind affinity-purified antibodies specific for synthetic peptides designed from human plasma proteins. The antibodies were covalently coupled to the beads and used to capture and release synthetic peptides that had been labeled at the C-terminus with the fluorochrome Alexa Fluor 488. Antibody coupling and specificity of antigen binding and release were measured by analysis of the POROS affinity beads by flow cytometry. The affinity-capture matrixes were also used through several antigen-binding and release cycles without loss of peptide binding efficiency. The ability to produce and characterize extremely small amounts of POROS affinity matrices will facilitate their use in protein microchemical procedures such as protein chip technology, monoclonal antibody screening and mass spectrometry, applications where analytes are limiting or present in low abundance in complex mixtures.  相似文献   

4.
Lactonization and amination of peptide mixtures containing C-terminal homoserine peptides facilitated separation of these peptide mixtures. The use of radio-actively labeled diamine allowed easy identification of the carboxyl terminal peptide in a cyanogen bromide generated digest. Ambiguities arising from mixtures of homoserine and homoserine lactone forms of peptides were resolved following amination of these mixtures. A C-terminal homoserine peptide was selectively removed from a mixture of nonhomoserine peptides.  相似文献   

5.
Peptide synthesis on cellulose using SPOT technology allows the parallel synthesis of large numbers of addressable peptides in small amounts. In addition, the cost per peptide is less than 1% of peptides synthesized conventionally on resin. The SPOT method follows standard fluorenyl-methoxy-carbonyl chemistry on conventional cellulose sheets, and can utilize more than 600 different building blocks. The procedure involves three phases: preparation of the cellulose membrane, stepwise coupling of the amino acids and cleavage of the side-chain protection groups. If necessary, peptides can be cleaved from the membrane for assays performed using soluble peptides. These features make this method an excellent tool for screening large numbers of peptides for many different purposes. Potential applications range from simple binding assays, to more sophisticated enzyme assays and studies with living microbes or cells. The time required to complete the protocol depends on the number and length of the peptides. For example, 400 9-mer peptides can be synthesized within 6 days.  相似文献   

6.
T cell receptors (TCR) recognize antigenic peptides in complex with the major histocompatibility complex (MHC) molecules and this trimolecular interaction initiates antigen-specific signaling pathways in the responding T lymphocytes. For the study of autoimmune diseases and vaccine development, it is important to identify peptides (epitopes) that can stimulate a given TCR. The use of combinatorial peptide libraries has recently been introduced as a powerful tool for this purpose. A combinatorial library of n-mer peptides is a set of complex mixtures each characterized by one position fixed to be a specified amino acid and all other positions randomized. A given TCR can be fingerprinted by screening a variety of combinatorial libraries using a proliferation assay. Here, we present statistical models for elucidating the recognition profile of a TCR using combinatorial library proliferation assay data and known MHC binding data.  相似文献   

7.
The objective of this study was to evaluate a sequence-specific chemistry for the ability to specifically capture peptides that contain N-terminal serine or threonine residues from mixtures. The first step is the oxidation of the 1,2-amino alcohol structure -CH(NH(2))CH(OH)- of peptides containing N-terminal serine or threonine with periodate. The newly formed aldehyde reacts with a labeling reagent containing a hydrazide, RCONHNH(2), to form a hydrazone-peptide conjugate, RCONHN=CH-peptide. Biotin-labeled conjugates can then be isolated by affinity purification with streptavidin. The method described in this report can be useful in simplifying the complex mixtures of peptides that are generated in typical proteomic analysis, where proteins are digested with trypsin and analyzed using liquid chromatography mass spectrometry data. The sequence-specific peptide selection not only reduces the complexity of digest mixtures, but also provides additional information for peptide identification. The targeted peptides are those that have either serine or threonine adjacent to a protease cleavage site. The sequence information should greatly aid in both database matching for protein identification and for de novo sequence determination.  相似文献   

8.
Protein termini play important roles in biological processes, but there have been few methods for comprehensive terminal proteomics. We have developed a new method that can identify both the amino and the carboxyl termini of proteins. The method independently uses two proteases, (lysyl endopeptidase) Lys-C and peptidyl-Lys metalloendopeptidase (Lys-N), to digest proteins, followed by LC-MS/MS analysis of the two digests. Terminal peptides can be identified by comparing the peptide masses in the two digests as follows: (i) the amino terminal peptide of a protein in Lys-C digest is one lysine residue mass heavier than that in Lys-N digest; (ii) the carboxyl terminal peptide in Lys-N digest is one lysine residue mass heavier than that in Lys-C digest; and (iii) all internal peptides give exactly the same molecular masses in both the Lys-C and the Lys-N digest, although amino acid sequences of Lys-C and Lys-N peptides are different (Lys-C peptides end with lysine, whereas Lys-N peptides begin with lysine). The identification of terminal peptides was further verified by examining their MS/MS spectra to avoid misidentifying pairs as termini. In this study, we investigated the usefulness of this method using several protein and peptide mixtures. Known protein termini were successfully identified. Acetylation on N-terminus and protein isoforms, which have different termini, was also determined. These results demonstrate that our new method can confidently identify terminal peptides in protein mixtures.  相似文献   

9.
We propose here a new concept of peptide detectability which could be an important factor in explaining the relationship between a protein's quantity and the peptides identified from it in a high-throughput proteomics experiment. We define peptide detectability as the probability of observing a peptide in a standard sample analyzed by a standard proteomics routine and argue that it is an intrinsic property of the peptide sequence and neighboring regions in the parent protein. To test this hypothesis we first used publicly available data and data from our own synthetic samples in which quantities of model proteins were controlled. We then applied machine learning approaches to demonstrate that peptide detectability can be predicted from its sequence and the neighboring regions in the parent protein with satisfactory accuracy. The utility of this approach for protein quantification is demonstrated by peptides with higher detectability generally being identified at lower concentrations over those with lower detectability in the synthetic protein mixtures. These results establish a direct link between protein concentration and peptide detectability. We show that for each protein there exists a level of peptide detectability above which peptides are detected and below which peptides are not detected in an experiment. We call this level the minimum acceptable detectability for identified peptides (MDIP) which can be calibrated to predict protein concentration. Triplicate analysis of a biological sample showed that these MDIP values are consistent among the three data sets.  相似文献   

10.
Using spot-synthesized peptide arrays, a functional peptide can be screened as a high-binding peptide for a target molecule. We have developed a rational screening method for functional peptides by analyzing the physicochemical rules of high-binding peptide sequences. To screen the peptides simply and strategically, we prepared an exhaustive 4-mer peptide library consisting of 256 peptides (44 = 256) characterized by four physicochemical groups of 20 amino acids: Group 1, non-charged hydrophobic amino acids; Group 2, non-charged hydrophilic amino acids; Group 3, positive-charged hydrophilic amino acids; Group 4, negative-charged hydrophilic amino acids. First, our previous screening data from cell adhesion, bile acid-binding, and nanoparticle-binding peptides were applied to the four-category analysis, and target-specific physicochemical characteristics were obtained. We then prepared an exhaustive 4-mer peptide library using these four physicochemical groups, and screened for high-binding peptides that bind model proteins interleukin-2 and IgG. We obtained individual physicochemical rules for high-binding peptides: group 1 or 4 amino acids in position (P) 1, group 1 in P2 and P4 for IL-2, and group 2 and 3 amino acids at all position for IgG. Therefore, this system, which employs the use of a simple and strategic peptide library, will be useful in the development of functional peptides.  相似文献   

11.
Hydrophobic mismatch still represents a puzzle for transmembrane peptides, despite the apparent simplicity of this concept and its demonstrated validity in natural membranes. Using a wealth of available experimental ((2))H NMR data, we provide here a comprehensive explanation of the orientation and dynamics of model peptides in lipid bilayers, which shows how they can adapt to membranes of different thickness. The orientational adjustment of transmembrane α-helices can be understood as the result of a competition between the thermodynamically unfavorable lipid repacking associated with peptide tilting and the optimization of peptide/membrane hydrophobic coupling. In the positive mismatch regime (long-peptide/thin-membrane) the helices adapt mainly via changing their tilt angle, as expected from simple geometrical predictions. However, the adaptation mechanism varies with the peptide sequence in the flanking regions, suggesting additional effects that modulate hydrophobic coupling. These originate from re-adjustments of the peptide hydrophobic length and they depend on the hydrophobicity of the flanking region, the strength of interfacial anchoring, the structural flexibility of anchoring side-chains and the presence of alternative anchoring residues.  相似文献   

12.
Here we present the theoretical and experimental evaluation of peptide isoelectric point as a method to aid in the identification of peptides from complex mixtures. Predicted pI values were found to match closely the experimentally obtained data, resulting in the development of a unique filter that lowers the effective false positive rate for peptide identification. Due to the reduction of the false positive rate, the cross-correlation parameters Xcorr and deltaCn from the SEQUEST program can be lowered resulting in 25% more peptide identifications. This approach was successfully applied to analysis of the soluble fraction of the E. coli proteome, where 417 proteins were identified from 1022 peptides using just 20 microg of material.  相似文献   

13.
alpha-Chymotrypsin was immobilized with a high coupling yield (up to 80%) to tresyl chloride activated Sepharose CL-4B.The immobilized enzyme was tested for its ability to synthesize soluble peptides from N-acetylated amino acid esters as acyl donors and amino acid amides as acceptor amines in water-water-miscible organic solvent mixtures. It was found that the yield of peptide increased with increasing concentration of organic cosolvent. Almost complete synthesis (97%) of Ac-Phe-Ala-NH(2) was obtained from Ac-Phe-OMe using a sixfold excess of Ala-NH(2). The rate of peptide formation in aqueous-organic solvent mixtures was good. Thus, 0.1M peptide was formed in less than 2 h in 50 vol% DMF with 0.1 mg immobilized chymotrypsin/mL reaction mixture. The immobilized enzyme distinguished between the L and D configurations of acceptor amino acid amides even in high concentration of nonaqueous component (90% 1,4-butanediol). The effect of temperature was studied. It was found that both the yield of peptide and the stability of immobilized enzyme increased when the temperature was lowered. Experiments could be performed at subzero temperatures in the aqueous-organic solvent mixtures resulting in very high yield of peptide. After three weeks continuous operation at 4 degrees C in 50% DMF, the immobilized enzyme retained 66%of its original synthetic activity. The activity of the immobilized enzyme was better conserved with a preparation made from agarose with a higher tresyl group content compared to a preparation made from a lower activated agarose, indicating that multiple point of attachment has a favorable effect on the stability of the enzyme in aqueous-organic solvent mixtures. The major advantage of using water-miscible instead of water-immiscible organic solvents to promote peptide syntheses appears to be the increased solubility of substrates and products, making continuous operation possible.  相似文献   

14.
Lew S  Caputo GA  London E 《Biochemistry》2003,42(36):10833-10842
We examined the effect of ionizable residues at positions flanking the hydrophobic core of helix-forming polyLeu peptides upon helix-helix interactions within model membrane vesicles composed of dioleoylphosphatidylcholine. The peptides studied were flanked on both the N and C termini either by two Lys (K(2)-flanked peptide), one Lys plus one Asp (DK-flanked peptide), or one Lys plus three Asp (KD(3)-flanked peptide). The fluorescence of a Trp residue positioned at the center of the hydrophobic sequence was used to evaluate peptide behavior. As judged by the concentration dependence of the maximum wavelength of Trp emission, there was significant oligomerization of the KD(3)- and DK-flanked peptides, but not the K(2)-flanked peptide, at neutral pH. At neutral pH mixtures of K(2)- and KD(3)-flanked peptides associated with each other, but mixtures of the K(2)- and DK-flanked peptides did not. Oligomerization by the DK- and KD(3)-flanked peptides decreased under low pH conditions in which the Asp residues were protonated. Additional experiments showed that at neutral pH the KD(3)-flanked peptide showed an increased tendency to oligomerize when as little as 10-15 mol % of an anionic lipid, phosphatidylglycerol, was present. The behavior of the other peptides was not strongly influenced by phosphatidylglycerol. These results can largely be explained by modulation of helix-helix interactions via electrostatic interactions involving the helix-flanking ionizable residues. Such interactions may influence membrane protein folding. The self-association of anionic KD(3)-flanked peptides suggests that additional interactions involving charged residues also can modulate helix-helix association.  相似文献   

15.
Peptide microarrays can be used for the high-throughput analysis of protein-peptide interactions. However, current peptide microarrays are rather costly to make and require cumbersome steps of introducing novel polymeric surfaces and/or chemical derivatization of peptides. Here, we report a novel method for manufacturing peptide microarrays by elevating the peptide on the layer of protein by a fusion protein approach. Using two protein kinases and their peptide substrates as examples, we show that elevating peptides on the layer of protein allows sensitive, specific, and efficient detection of peptide-protein interactions without the need for complicated chemical modification of solid supports and peptides. It was found that kinase activity could be detected with as low as 0.09 fmol of kemptide, which is about 1000-fold more sensitive than the 0.1 pmol obtained with other microarray systems. Furthermore, peptides can be produced as fusion proteins by fermentation of recombinant Escherichia coli and thus the expensive peptide synthesis process can be avoided. Therefore, this new strategy will not only be useful in high-throughput and cost-effective screening of kinase substrate peptides but also be generally applicable in studying various protein-peptide interactions.  相似文献   

16.
Although HPLC-ESI-MS/MS is rapidly becoming an indispensable tool for the analysis of peptides in complex mixtures, the sequence coverage it affords is often quite poor. Low protein expression resulting in peptide signal intensities that fall below the limit of detection of the MS system in combination with differences in peptide ionization efficiency plays a significant role in this. A second important factor stems from differences in physicochemical properties of each peptide and how these properties relate to chromatographic retention and ultimate detection. To identify and understand those properties, we compared data from experimentally identified peptides with data from peptides predicted by in silico digest of all corresponding proteins in the experimental set. Three different complex protein mixtures extracted were used to define a training set to evaluate the amino acid retention coefficients based on linear regression analysis. The retention coefficients were also compared with other previous hydrophobic and retention scale. From this, we have constructed an empirical model that can be readily used to predict peptides that are likely to be observed on our HPLC-ESI-MS/MS system based on their physicochemical properties. Finally, we demonstrated that in silico prediction of peptides and their retention coefficients can be used to generate an inclusion list for a targeted mass spectrometric identification of low abundance proteins in complex protein samples. This approach is based on experimentally derived data to calibrate the method and therefore may theoretically be applied to any HPLC-MS/MS system on which data are being generated.  相似文献   

17.
Multiple peptide synthesis using a single support (MPS3)   总被引:1,自引:0,他引:1  
An automated multiple peptide synthesis method to synthesize, cleave, and purify several peptides simultaneously in a single batch has been developed. The technique is based on the synthesis of multiple peptides on a single solid phase support and is easily adapted to manual or to automated methods. The approach relies on coupling of amino acid mixtures to the resin and it has been found that DCC/HOBt gives the best coupling performance. Fast Atom Bombardment Mass Spectrometry (FAB-MS) was used to rapidly and efficiently identify the peptides in each synthetic mixture which significantly assisted the purification process by HPLC. The method has been successfully applied to the synthesis of magainin 2 and angiotensinogen peptides.  相似文献   

18.
Peptide detectability is defined as the probability that a peptide is identified in an LC-MS/MS experiment and has been useful in providing solutions to protein inference and label-free quantification. Previously, predictors for peptide detectability trained on standard or complex samples were proposed. Although the models trained on complex samples may benefit from the large training data sets, it is unclear to what extent they are affected by the unequal abundances of identified proteins. To address this challenge and improve detectability prediction, we present a new algorithm for the iterative learning of peptide detectability from complex mixtures. We provide evidence that the new method approximates detectability with useful accuracy and, based on its design, can be used to interpret the outcome of other learning strategies. We studied the properties of peptides from the bacterium Deinococcus radiodurans and found that at standard quantities, its tryptic peptides can be roughly classified as either detectable or undetectable, with a relatively small fraction having medium detectability. We extend the concept of detectability from peptides to proteins and apply the model to predict the behavior of a replicate LC-MS/MS experiment from a single analysis. Finally, our study summarizes a theoretical framework for peptide/protein identification and label-free quantification.  相似文献   

19.
The success attributed to identification and characterization of gel separated proteins by mass spectrometry (MS) is highly dependent on the percentage of an entire sequence covered by matching peptides derived from enzymatic digestion. Desalting and concentration of peptide mixtures on reversed-phase (RP) microcolumns prior to mass spectrometric analysis have resulted in increased signal-to-noise ratio and sensitivity, and consequently higher sequence coverage. A large proportion of peptides, however, remains undetected by MS presumably because they are lost during sample preparation on microcolumns, or are suppressed in the ionization process. We report here the use of graphite powder packed in constricted GELoader tips as an alternative to RP microcolumns for desalting and concentration of peptide mixtures prior to MS. Such columns are able to retain small and/or hydrophilic peptides that can be lost when using RP microcolumns. In addition, we show that samples contaminated with small biological polymers can readily be analyzed using graphite powder rather than RP microcolumns, since the polymer molecules bind strongly to graphite and are not eluted with the peptides.  相似文献   

20.
Trypsin cleaves exclusively C-terminal to arginine and lysine residues   总被引:2,自引:0,他引:2  
Almost all large-scale projects in mass spectrometry-based proteomics use trypsin to convert protein mixtures into more readily analyzable peptide populations. When searching peptide fragmentation spectra against sequence databases, potentially matching peptide sequences can be required to conform to tryptic specificity, namely, cleavage exclusively C-terminal to arginine or lysine. In many published reports, however, significant numbers of proteins are identified by non-tryptic peptides. Here we use the sub-parts per million mass accuracy of a new ion trap Fourier transform mass spectrometer to achieve more than a 100-fold increased confidence in peptide identification compared with typical ion trap experiments and show that trypsin cleaves solely C-terminal to arginine and lysine. We find that non-tryptic peptides occur only as the C-terminal peptides of proteins and as breakup products of fully tryptic peptides N-terminal to an internal proline. Simulating lower mass accuracy led to a large number of proteins erroneously identified with non-tryptic peptide hits. Our results indicate that such peptide hits in previous studies should be re-examined and that peptide identification should be based on strict trypsin specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号