首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.

Background

Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear.

Results

Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA.

Conclusions

For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the identified N- and C-terminal binding domains of the protein to CypA.  相似文献   

7.
The HIV-1 Rev and integrase (IN) proteins control important functions in the viral life cycle. We have recently discovered that the interaction between these proteins results in inhibition of IN enzymatic activity. Peptides derived from the Rev and IN binding interfaces have a profound effect on IN catalytic activity: Peptides derived from Rev inhibit IN, while peptides derived from IN stimulate IN activity by inhibiting the Rev-IN interaction. This inhibition leads to multi integration, genomic instability and specific death of virus-infected cells. Here we used protein docking combined with refinement and energy function ranking to suggest a structural model for the Rev-IN complex. Our results indicate that a Rev monomer binds IN at two sites that match our experimental binding data: (1) IN residues 66-80 and 118-128; (2) IN residues 174-188. According to our model, IN binds Rev and its cellular cofactor, lens epithelium derived growth factor (LEDGF), through overlapping interfaces. This supports previous observations that IN is regulated by a tight interplay between Rev and LEDGF. Rev may bind either the IN dimer or tetramer. Accordingly, Rev is suggested to inhibit IN by two possible mechanisms: (i) shifting the oligomerization equilibrium of IN from an active dimer to an inactive tetramer; (ii) displacing LEDGF from IN, resulting in inhibition of IN binding to the viral DNA. Our model is expected to contribute to the development of lead compounds that inhibit the Rev-IN interaction and thus lead to multi-integration of viral cDNA and consequently to apoptosis of HIV-1 infected cells.  相似文献   

8.
Viral integrase (IN) and Vpr are both components of the human immunodeficiency virus type 1 (HIV-1) pre-integration complex. To investigate whether these proteins interact within this complex, we investigated the effects of Vpr and its subdomains on IN activity in vitro. When a 21mer oligonucleotide was used as a donor and acceptor, both Vpr and its C-terminal DNA-binding domain [(52–96)Vpr] inhibited the integration reaction, whereas the (1–51)Vpr domain did not affect IN activity. Steady-state fluorescence anisotropy showed that both full-length and (52–96)Vpr bind to the short oligonucleotide, thereby extending previous observations with long DNA. The concentrations of the two proteins required to inhibit IN activity were consistent with their affinities for the oligonucleotide. The use of a 492 bp mini-viral substrate confirmed that Vpr can inhibit the IN-mediated reaction. However, the activity of (52–96)Vpr differed notably since it stimulated specifically integration events involving two homologous mini-viral DNAs. Order of addition experiments indicated that the stimulation was maximal when IN, (50–96)Vpr and the mini-viral DNA were allowed to form a complex. Furthermore, in the presence of (50–96)Vpr, the binding of IN to the mini-viral DNA was dramatically enhanced. Taken together, these data suggest that (52–96)Vpr stimulates the formation of a specific complex between IN and the mini-viral DNA.  相似文献   

9.
10.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the HIV-1 lifecycle which aids the integration of viral DNA into the host chromosome. Recently synthesized 12-mer peptide EBR28, which can strongly bind to IN, is one of the most potential small peptide leading compounds inhibiting IN binding with viral DNA. However, the binding mode between EBR28 peptide with HIV-1 IN and the inhibition mechanism remain uncertain. In this paper, the binding modes of EBR28 with HIV-1 IN monomer core domain (IN(1)) and dimmer core domain (IN(2)) were investigated by using molecular docking and molecular dynamics (MD) simulation methods. The results indicated that EBR28 bound to the interfaces of the IN(1) and IN(2) systems mainly through the hydrophobic interactions with the beta3, alpha1 and alpha5 regions of the proteins. The binding free energies for IN(1) with a series of EBR28 mutated peptides were calculated with the MM/GBSA model, and the correlation between the calculated and experimental binding free energies is very good (r=0.88). Thus, the validity of the binding mode of IN(1) with EBR28 was confirmed. Based on the binding modes, the inhibition mechanism of EBR28 was explored by analyzing the essential dynamics (ED), energy decomposition and the mobility of EBR28 in the two docked complexes. The proposed inhibition mechanism is represented that EBR28 binds to the interface of IN(1) to form the IN(1)_EBR28 complex and preventes the formation of IN dimmer, finally leads to the partial loss of binding potency for IN with viral DNA. All of the above simulation results agree well with experimental data, which provide us with some helpful information for designing anti-HIV small peptide drugs.  相似文献   

11.
12.
Maes M  Loyter A  Friedler A 《The FEBS journal》2012,279(16):2795-2809
HIV-1 integrase (IN) is one of the key enzymes in the viral replication cycle. It mediates the integration of viral cDNA into the host cell genome. IN activity requires interactions with several viral and cellular proteins, as well as IN oligomerization. Inhibition of IN is an important target for the development of anti-HIV therapies, but there is currently only one anti-HIV drug used in the clinic that targets IN. Several other small-molecule anti-IN drug leads are either undergoing clinical trials or in earlier stages of development. These molecules specifically inhibit one of the IN-mediated reactions necessary for successful integration. However, small-molecule inhibitors of protein-protein interactions are difficult to develop. In this review, we focus on peptides that inhibit IN. Peptides have advantages over small-molecule inhibitors of protein-protein interactions: they can mimic the structures of the binding domains within proteins, and are large enough to competitively inhibit protein-protein interactions. The development of peptides that bind IN and inhibit its protein-protein interactions will increase our understanding of the IN mode of action, and lead to the development of new drug leads, such as small molecules derived from these peptides, for better anti-HIV therapy.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein is an emerging target for the development of anti-HIV drugs. We recently described a new approach for inhibiting IN by “shiftides”—peptides that inhibit the protein by shifting its oligomerization equilibrium from the active dimer to the inactive tetramer. In this study, we used the yeast two-hybrid system with the HIV-1 IN as a bait and a combinatorial peptide aptamer library as a prey to select peptides of 20 amino acids that specifically bind IN. Five non-homologous peptides, designated as IN-1 to IN-5, were selected. ELISA studies confirmed that IN binds the free peptides. All the five peptides interact with IN with comparable affinity (Kd≈10 μM), as was revealed by fluorescence anisotropy studies. Only one peptide, IN-1, inhibited the enzymatic activity of IN in vitro and the HIV-1 replication in cultured cells. In correlation, fluorescence anisotropy binding experiments revealed that of the five peptides, only the inhibitory IN-1 inhibited the DNA binding of IN. Analytical gel filtration experiments revealed that only the IN-1 and not the four other peptides shifted the oligomerization equilibrium of IN towards the tetramer. Thus, the results show a distinct correlation between the ability of the selected peptides to inhibit IN activity and that to shift its oligomerization equilibrium.  相似文献   

14.
The basic viral protein R (Vpr) performs several functions during the human immunodeficiency virus HIV-1 retroviral cycle, including G2 mitosis arrest and nuclear import of the preintegration complex allowing lentivirus to replicate in nondividing cells. Accordingly, this protein was found in the nucleus of infected cells. In the virus, Vpr is incorporated through interaction with both nucleocapsid protein 7 (NCp7) and p6, two small proteins encoded by the C-terminal part of the Gag precursor. NCp7 is also involved in genomic RNA encapsidation during the budding process suggesting a possible interaction of Vpr with nucleic acids, either directly or via the NCp7 intermediate. Gel shift experiments were carried out with RNA and DNA using synthetic Vpr and peptide derivatives. The results show that Vpr binds to nucleic-acid inducing aggregates. This process, which requires the C-terminal basic domain of the protein (in particular the helical 70-80 domain), is regulated by the N-terminal region of Vpr. Moreover, NCp7 was shown to enhance RNA recognition by Vpr, a feature that could be required for Vpr encapsidation and during nuclear import of the preintegration complex.  相似文献   

15.
Vpr and Vpx proteins from human and simian immunodeficiency viruses (HIV and SIV) are incorporated into virions in quantities equivalent to those of the viral Gag proteins. We demonstrate here that Vpr and Vpx proteins from distinct lineages of primate lentiviruses were able to bind to their respective Gag precursors. The capacity of HIV type 1 (HIV-1) Vpr mutants to bind to Pr55Gag was correlated with their incorporation into virions. Molecular analysis of these interactions revealed that they required the C-terminal p6 domain of the Gag precursors. While the signal for HIV-1 Vpr binding lies in the leucine triplet repeat region of the p6 domain reported to be essential for incorporation, SIVsm Gag lacking the equivalent region still bound to SIVsm Vpr and Vpx, indicating that the determinants for Gag binding are located upstream of this region of the p6 domain. Binding to Gag cleavage products showed that HIV-1 Vpr interacted directly with the nucleocapsid protein (NC), whereas SIVsm Vpr and Vpx did not interact with NC but with the p6 protein. These results (i) reveal differences between HIV-1 and SIVsm for the p6 determinants required for Vpr and Vpx binding to Gag and (ii) suggest that HIV-1 Vpr and SIVsm Vpr and Vpx interact with distinct cleavage products of the precursor following proteolytic processing in the virions.  相似文献   

16.
Human immunodeficiency virus 1 (HIV-1) Rev and integrase (IN) proteins are required within the nuclei of infected cells in the late and early phases of the viral replication cycle, respectively. Here we show using various biochemical methods, that these two proteins interact with each other in vitro and in vivo. Peptide mapping and fluorescence anisotropy showed that IN binds residues 1-30 and 49-74 of Rev. Following this observation, we identified two short Rev-derived peptides that inhibit the 3'-end processing and strand-transfer enzymatic activities of IN in vitro. The peptides bound IN in vitro, penetrated into cultured cells, and significantly inhibited HIV-1 in multinuclear activation of a galactosidase indicator (MAGI) and lymphoid cultured cells. Real time PCR analysis revealed that the inhibition of HIV-1 multiplication is due to inhibition of the catalytic activity of the viral IN. The present work describes novel anti-HIV-1 lead peptides that inhibit viral replication in cultured cells by blocking DNA integration in vivo.  相似文献   

17.
18.
19.
We have characterized a murine monoclonal antibody (MAb 35), which was raised against human immunodeficiency virus type 1 (HIV-1) integration protein (IN), and the corresponding Fab 35. Although MAb 35 does not inhibit HIV-1 IN, Fab 35 does. MAb 35 (and Fab 35) binds to an epitope in the C-terminal region of HIV-1 IN. Fab 35 inhibits 3'-end processing, strand transfer, and disintegration; however, DNA binding is not affected. The available data suggest that Fab 35 inhibits enzymatic activities of IN by interfering with the ability of IN to form multimers that are enzymatically active. This implies that the C-terminal region of HIV-1 IN participates in interactions that are essential for the multimerization of IN. Titration of the various IN-mediated enzymatic activities suggests that different degrees of multimerization are required for different activities of HIV-1 IN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号