首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Ab initio calculations at the G2 level were used in a theoretical analysis of the kinetics of the decomposition of trifluoro-, trichloro-, and tribromomethanols. The high-pressure limiting rate coefficients kdiss,∞ for the thermal dissociation of CF3OH, CCl3OH, and CBr3OH were calculated using the conventional transition state theory. The results of potential surface calculations show that in the presence of the hydrogen halides HX (X = F, Cl, and Br), considerably lower energy pathways are accessible for the decomposition of CF3OH, CCl3OH, and CBr3OH. The mechanism of the reactions appears to be complex and consists of three consecutive elementary processes with the formation of pre- and post-reaction adducts. The presence of hydrogen halides considerably decreases the energy barrier for the bimolecular decomposition of the alcohols CF3OH, CCl3OH, and CBr3OH. Results of this study indicate that hydrogen halides can considerably accelerate the homogeneous decomposition of perhalogenated methanols when they are present in the reaction area at sufficiently high concentrations. However, the atmospheric concentrations of hydrogen halides are too small for efficient removal of atmospheric CF3OH, CCl3OH, and CBr3OH.  相似文献   

2.
Luider  C.  Petticrew  E.  Curtis  P. J. 《Hydrobiologia》2003,494(1-3):37-41
Scavenging of dissolved organic matter (DOM) by particulate metal oxides like Fe(OH)3(s) is one of three processes that can influence the concentration and composition of DOM in aquatic systems. The other two possible processes include photodegradation and biodegradation. In combination, these processes alter the concentration and composition of DOM systematically with increasing time, measured as hydrologic residence time (HRT). The objective of this research was to determine the change in Fe(OH)3(s)-scavengable dissolved organic carbon (DOC) with increasing HRT (0–80 yr). In addition, DOC from allochthonous and autochthonous sources were included in this study. The susceptibility of DOC from surface waters to scavenging by Fe(OH)3(s) was found to decrease as a function of HRT, from approximately 90% to 79%. The lowest HRT system was operationally considered equivalent to allochthonous DOC, while autochthonous DOC was scavenged similarly to DOC from the 80 yr HRT system. These results indicate that scavenging of bulk DOC may be limited by metal loading in aquatic systems, and that the bulk of Fe(OH)3(s)-reactive DOC is from allochthonous sources. In addition, all surface waters treated with Fe(OH)3(s) contained approximately 1 mg l–1 of DOC that was resistant to scavenging (SD = 0.50, n = 5), which suggests that a refractory fraction of DOC persists in surface waters.  相似文献   

3.
Ab initio calculations at the G2 level were used in a theoretical analysis of the kinetics of unimolecular and water-accelerated decomposition of the halogenated alcohols CX3OH (X = F, Cl, and Br) into CX2O and HX. The calculations show that reactions of the unimolecular decomposition of CX3OH are of no importance under atmospheric conditions. A considerably lower energy pathway for the decomposition of CX3OH is accessible by homogenous reactions between CX3OH and water. It is shown that CX3OH + H2O reactions proceed via the formation of intermediate complexes. The mechanism of the reactions appears to be complex and consists of three consecutive elementary processes. The calculated values of the second-order rate constants are of 2.5 × 10−21, 2.1 × 10−19, and 1.2 × 10−17 cm3molecule−1s−1 at 300 K for CF3OH + H2O, CCl3OH + H2O, and CBr3OH + H2O, respectively. The theoretically derived atmospheric lifetimes of the CX3OH molecules indicate that the water-mediated decomposition reactions CX3OH + H2O may be the most efficient process of CF3OH, CCl3OH, and CBr3OH loss in the atmosphere.  相似文献   

4.
The global carbon cycle is one of the most important bio-geochemical cycles. Through photosynthesis, green plants absorb CO2 from the atmosphere to produce organic matters, such as sugars, and covert solar energy into chemical energy. The organic matters are then used by all other life forms including humans. When ecosystems and atmosphere are in dynamic equilibrium, the flow of CO2 from the atmosphere into the biosphere because of photosynthesis should be equivalent to the flow of CO2 released back into the atmosphere by respiration. However, during the past century atmospheric CO2 concentration has increased substantially because of the burning of fossil fuels. It is highly likely that the atmospheric increase has resulted in global warming and sea level rise, as suggested by the Intergovernmental Panel on Climate Change (IPCC) .  相似文献   

5.
The polymerization of silica in water solution to form quartz fibers proceeds by a dehydration process, analogous to condensation polymerization in organic high-polymers, in which monomeric Si(OH)4 groups unite through Si–O–Si bonds with the elimination of H2O. The resulting fibers are structurally polar along the direction of elongation, are enantiomorphous, and generally shown stereospecific twisting around the direction of elongation. In these regards the fibers are analogues of biopolymers such as RNA and DNA. Quartz also possesses specific adsorptive relations to a wide range of organic substances including monomer amino acids, short-chain polypeptides, and proteins. These involve hydrogen-bonding between (OH) or silanoi groups on the surface of the quartz with active side-groups on the organic molecules and in part are epitaxial through dimensional coincidences in the interface.Geochemical evidence indicates that quartz was deposited in the early Precambrian ocean either by direct crystallization from seawater or by recrystallization of amorphous silica. What is of interest is the possible role of quartz fibers as a template and co-polymer in the passage of biomonomers in the pre-biotic ocean to the long-chain biopolymers such as nucleic acids and proteins that are involved in life processes.  相似文献   

6.
Fundamental changes in seawater carbonate chemistry and sea surface temperatures associated with the ocean uptake of anthropogenic CO2 are accelerating, but investigations of the susceptibility of biogeochemical processes to the simultaneous occurrence of multiple components of climate change are uncommon. Here, we quantify how concurrent changes in enhanced temperature and atmospheric pCO2, coupled with an associated shift in macrofaunal community structure and behavior (sediment particle reworking and bioirrigation), modify net carbon and nutrient concentrations (NH4-N, NOx-N, PO4-P) in representative shelf sea sediment habitats (mud, sandy-mud, muddy-sand and sand) of the Celtic Sea. We show that net concentrations of organic carbon, nitrogen and phosphate are, irrespective of sediment type, largely unaffected by a simultaneous increase in temperature and atmospheric pCO2. However, our analyses also reveal that a reduction in macrofaunal species richness and total abundance occurs under future environmental conditions, varies across a gradient of cohesive to non-cohesive sediments, and negatively moderates biogeochemical processes, in particular nitrification. Our findings indicate that future environmental conditions are unlikely to have strong direct effects on biogeochemical processes but, particularly in muddy sands, the abundance, activity, composition and functional role of invertebrate communities are likely to be altered in ways that will be sufficient to regulate the function of the microbial community and the availability of nutrients in shelf sea waters.  相似文献   

7.
We present ab-initio periodic Hartree–Fock calculations (crystal program) of small molecules on TiO2 and MgO. The adsorption of the molecules may be molecular or dissociative. This depends on their acid and basic properties in the gas phase. For the molecular adsorption, the molecules are adsorbed as bases on Ti(+IV) sites, the adsorption energies correlate with the proton affinities. The dissociations on the surface correlate with the gas phase cleavages: thus, the dissociation of MeOH leads to a preferential basic cleavage (the fragment HO– is adsorbed on a Ti+4 ion and the fragment Me+ is adsorbed on a O2– ion of the oxide). The opposite result is obtained with MeSH. Another important factor is the adsorbate–adsorbate interaction: favorable cases are a sequence of H-bonds for the hydroxyl groups resulting from the water dissociation and the mode of adsorption for the ammonium ions. Lateral interactions also force the adsorbed CO2 molecules to bend over the surface so that their mutual orientation resembles the geometry of the CO2 dimer. With respect to water adsorption, MgO appears to be a basic oxide. As experimentally observed, NH3 adsorbs preferentially on TiO2 and CO2 on MgO. However, this difference of reactivity should not be expressed in terms of acid vs. basic behaviour but in terms of hard and soft acidity. The MgO surface is a 'soft' acidic surface that reacts preferentially with the soft base, CO2.  相似文献   

8.
Vanadium-based catalysts are used in many technological processes, among which the removal of nitrogen oxides (NOx) from waste gases is one of the most important. The chemical reaction responsible for this selective catalytic reaction (SCR) is based on the reduction of NOx molecules to N2, and a possible reductant in this case is pre-adsorbed NH3. In this paper, NH3 adsorption on Brønsted OH acid centers on low-index surfaces of V2O5 (010, 100, 001) is studied using a theoretical DFT method with a gradient-corrected functional (RPBE) in the embedded cluster approximation model. The results of the calculations show that ammonia molecules are spontaneously stabilized on all low-index surfaces of the investigated catalyst, with adsorption energies ranging from ?0.34 to ?2 eV. Two different mechanisms of ammonia adsorption occur: the predominant mechanism involves the transfer of a proton from a surface OH group and the stabilization of ammonia as an NH4 + cation bonded to surface O atom(s), while an alternative mechanism involves the hydrogen bonding of NH3 to a surface OH moiety. The latter binding mode is present only in cases of stabilization over a doubly coordinated O(2) center at a (100) surface. The results of the calculations indicate that a nondirectional local electrostatic interaction with ammonia approaching a surface predetermines the mode of stabilization, whereas hydrogen-bonding interactions are the main force stabilizing the adsorbed ammonia. Utilizing the geometric features of the hydrogen bonds, the overall strength of these interactions was quantified and qualitatively correlated (R?=?0.93) with the magnitude of the stabilization effect (i.e., the adsorption energy).
Figure
Two different modes (NH3/NH4 +) of ammonia adsorption on the (001)V2O5 net plane.  相似文献   

9.
Inorganic Carbon of Sediments in the Yangtze River Estuary and Jiaozhou Bay   总被引:3,自引:0,他引:3  
JGOFS results showed that the ocean is a major sink for the increasing atmospheric carbon dioxide resulting from human activity. However, the role of the coastal seas in the global carbon cycling is poorly understood. In the present work, the inorganic carbon (IC) in the Yangtze River Estuary and Jiaozhou Bay are studied as examples of offshore sediments. Sequential extraction was used to divide inorganic carbon in the sediments into five forms, NaCl form, NH3 H2O form, NaOH form, NH2OH HCl form and HCl form. Studied of their content and influencing factors were also showed that NaCl form < NH3 H2O form<NaOH form < NH2OH HCl form<HCl form, and that their influencing factors of pH, Eh, Es, water content, organic carbon, organic nitrogen, inorganic nitrogen, organic phosphorus and inorganic phosphorus on inorganic carbon can be divided into two groups, and that every factor has different influence on different form or on the same form in different environment. Different IC form may transform into each other in the early diagenetic process of sediment, but NaCl form, NH3 H2O form, NaOH form and NH2OH HCl form may convert to HCl form ultimately. So every IC form has different contribution to carbon cycling. This study showed that the contribution of various form of IC to the carbon cycle is in the order of NaOH form>NH2OH HCl form>NH3 H2O form>NaCl form>HCl form, and that the contribution of HCl form contributes little to carbon cycling, HCl form may be one of end-result of atmospheric CO2. So Yangtze River estuary sediment may absorb at least about 40.96×1011 g atmospheric CO2 every year, which indicated that offshore sediment play an important role in absorbing atmospheric CO2.  相似文献   

10.
Titan is the only moon in the solar system with a substantial atmosphere. The organic chemistry of its N2–CH4 atmosphere may resemble that of the earth's primitive atmosphere before life arose. The investigation of the synthesis of prebiotic molecules in Titan's atmosphere and the atmospheric and surface environments of this planet-sized moon will be the focal point of the Cassini Project proposed to the European Space Agency for an international Saturn Orbiter/Titan Probe mission.  相似文献   

11.
Summary Quantitative determinations of the threshold concentrations for sourness of about 40 organic acids have been determined with an accuracy of about 6 per cent. Hydrogen ion concentrations have been obtained by use of the cell Hg/HgCl/KCl sat./organic acid/H2. It is assumed that only undissociated acid molecules can cross the phase boundary between the aqueous solution and the nerve receptor, and that the stimulation of the sensation of sourness is due solely to hydrogen ion. All acids tasting equally sour should have the same pH within the nerve receptor. From the experimental data, relative concentration gradients for the nonionized acids have been calculated. It is shown that the addition of polar groups, such as OH, Cl, C=C, C=O, COOH, NH2 to the organic acid make it from 20 to 500 times more difficult for the organic acid to penetrate into the nerve receptor. On the other hand, lengthening the carbon chain by addition of CH2 groups makes penetration easier. The phenomena can be largely explained on the hypothesis that these organic acids are adsorbed into a tissue which is essentially like fat rather than like protein.  相似文献   

12.
Kristensen  Erik 《Hydrobiologia》2000,421(1):1-24
The present paper reviews the current knowledge on diagenetic carbon transformations at the oxic/anoxic interface in coastal marine sediments. Oxygen microelectrodes have revealed that most coastal sediments are covered only by a thin oxic surface layer. The penetration depth of oxygen into sediments is controlled by the balance between downward transport and consumption processes. Consumption of oxygen is directly or indirectly caused by respiration of benthic organisms. Aerobic organisms have the enzymatic capacity for complete oxidation of organic carbon. Anaerobic decay occurs stepwise, involving several types of bacteria. Large organic molecules are first fermented into small moieties. These are then oxidized completely by anaerobic respirers using a sequence of electron acceptors: Mn4+, NO3 -, Fe3+, SO4 2- and CO2. The quantitative role of each electron acceptor depends on the sediment type and water depth. Since most of the sediment oxygen uptake is due to reoxidation of reduced metabolites, aerobic respiration is of limited importance. It has been suggested that sediments contain three major organic fractions: (1) fresh material that is oxidized regardless of oxygen conditions; (2) oxygen sensitive material that is only degraded in the presence of oxygen; and (3) totally refractory organic matter. Processes occurring at the oxic/anoxic boundaries are controlled by a number of factors. The most important are: (1) temperature, (2) organic supply, (3) light, (4) water currents, and (5) bioturbation. The role of bioturbation is important because the infauna creates a three-dimensional mosaic of oxic/anoxic interfaces in sediments. The volume of oxic burrow walls may be several times the volume of oxic surface sediment. The infauna increases the capacity, but not the overall organic matter decay in sediments, thus decreasing the pool of reactive organic matter. The increase in decay capacity is partly caused by injection of oxygen into the sediment, and thereby enhancing the decay of old, oxygen sensitive organic matter several fold. Finally, some future research directions to improve our understanding of diagenetic processes at the oxic/anoxic interface are suggested.  相似文献   

13.
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed.  相似文献   

14.
Hofmann  Andrea M.  Kuefner  Wolfgang  Mayr  Christoph  Dubois  Nathalie  Geist  Juergen  Raeder  Uta 《Hydrobiologia》2021,848(18):4285-4309

Mountain lakes are increasingly impacted by a series of both local and global disturbances. The present study reveals the eutrophication history of a remote subalpine lake (Oberer Soiernsee, Northern Alps, Germany), triggered by deforestation, alpine pasturing, hut construction, tourism and atmospheric deposition, and identifies the intertwined consequences of on-going global warming on the lake’s ecosystem. The primary objective was to disentangle the various direct and indirect impacts of these multiple stressors via down-core analyses. Our multi-proxy approach included subfossil diatom assemblages, carbon and nitrogen stable isotope ratios and subfossil pigments from dated sediments. Shifts within the diatom assemblages were related to variations in trophic state, lake transparency, water temperature and thermal stratification. The organic carbon isotope (δ13Corg) records, the diatom valve density and the pigment concentrations documented the development of primary production and composition. Total nitrogen isotope values (δ15N) are more likely to reflect the history of atmospheric nitrogen pollution than lake-internal processes, also mirrored by the decoupling of δ15N and δ13Corg trends. The composition of sedimentary pigments allowed a differentiation between planktonic and benthic primary production. Concordant trends of all indicators suggested that the lake ecosystem passed a climatic threshold promoted by local and long-distance atmospheric nutrient loadings.

  相似文献   

15.
An understanding of dynamic processes of proteins on the electrode surface could enhance the efficiency of bioelectronics development and therefore it is crucial to gain information regarding both physical adsorption of proteins onto the electrode and its electrochemical property in real-time. We combined high-speed atomic force microscopy (HS-AFM) with electrochemical device for simultaneous observation of the surface topography and electron transfer of redox proteins on an electrode. Direct electron transfer of cytochrome c (cyt c) adsorbed on a self-assembled monolayers (SAMs) formed electrode is very attractive subject in bioelectrochemistry. This paper reports a real-time visualization of cyt c adsorption processes on an 11-mercaptoundecanoic acid-modified Au electrode together with simultaneous electrochemical measurements. Adsorbing cyt c molecules were observed on a subsecond time resolution simultaneously with increasing redox currents from cyt c using EC-HS-AFM. The root mean square roughness (RRMS) from the AFM images and the number of the electrochemically active cyt c molecules adsorbed onto the electrode (Γ) simultaneously increased in positive cooperativity. Cyt c molecules were fully adsorbed on the electrode in the AFM images when the peak currents were steady. This use of electrochemical HS-AFM significantly facilitates understanding of dynamic behavior of biomolecules on the electrode interface and contributes to the further development of bioelectronics.  相似文献   

16.
W. Schaaf  W. Zech 《Plant and Soil》1993,152(2):277-285
Element budgets of a heavily damaged Norway spruce ecosystem at Hohe Matzen in the Fichtel Mountains/FRG were studied over 3 years. The trees show severe symptoms of decline and Mg deficiency. The soil is a typic Dystrochrept derived from granite with sandy texture, high stone content, and low base saturation. The budgets show high releases of N, S and Al from the ecosystem as a result of input, buffering and turnover processes. After an increase of proton fluxes in the organic surface layer, a strong reduction of protons in the B horizon was found. This process was accompanied by the release of Al, whereas reactive Al(OH)3 was exhausted in the A horizon. The low ANC is also shown in pH-stat.-titrations. The data indicate a strong mineralisation in the humus layer, which results in a net release of NH4, SO4 and TOC. Nitrification takes place mainly in the A horizon. With respect to the N-budget, the ecosystem is approaching the state of N saturation. The processes of N turnover lead to an internal proton production exceeding the atmospheric input, and thus contributing to soil acidification.  相似文献   

17.
《Free radical research》2013,47(1-5):199-209
Hydrocarbon oxidation in the atmosphere proceeds generally by the following sequence of reactions: hydrocarbon + OH → alkyl radical + H2O, alkyl radical + O,(3I) → alkylperoxy radical, alkylperoxy radical + NO → alkoxy radical + NO2, alkoxy radical + O2(3X) -→ aldehyde + HO,. The atmospheric lifetimes of hydrocarbons are determined by their reactivity towards OH as well as by the average OH concentration level. They are compound specific and vary from several hours to several years. Hydrocarbon oxidation chains couple with other trace gases (Ov, HOx, and NOv). For the conditions of the average continental atmosphere an increase of the oxidative potential (HOv, Ox) is predicted through hydrocarbon oxidation.  相似文献   

18.
We present results ofin situ EPR investigations of the mechanism of photostimulated processes resulting in radical and ion-radical particle formation on the surfaces of oxide dielectrics (magnesium, calcium, aluminum oxides, zeolites). Three types of reactions are discussed:
  1. Formation of oxygen anion-radicals on MgO and CaO surfaces.
  2. Formation of benzene cation-radicals on ZSM-5 zeolites.
  3. Formation of radical particles from aromatic nitrocompounds adsorbed on alumina.
On the basis of investigation of the spectral relationships and the properties of surface active centre, it is concluded that light is absorbed by coordinatively unsaturated surface sites in the first system, whereas in the other processes, electron donor-acceptor (EDA) complexes between adsorbed molecules and surface active sites are supposed to be key intermediates. These EDA complexes are shown to incorporate donor solvent molecules as well. In this case the energetic characteristics of the photoprocesses are substantially determined by the ionization potential of solvent molecules. Mechanisms of photo- and thermostimulated processes are compared and possible similarities are discussed for all the reactions studied.  相似文献   

19.
Across northern Alberta, Canada, bogs experience periodic wildfire and, in the Fort McMurray region, are exposed to increasing atmospheric N deposition related to oil sands development. As the fire return interval shortens and/or growing season temperatures increase, the regional peatland CO2–C sink across northern Alberta will likely decrease, but the magnitude of the decrease could be diminished if increasing atmospheric N deposition alters N cycling in a way that stimulates post-fire successional development in bogs. We quantified net ammonification, nitrification, and dissolved organic N (DON) production in surface peat along a post-fire chronosequence of five bogs where we also experimentally manipulated N deposition (no water controls plus 0, 10, and 20 kg N ha?1 yr?1 simulated deposition, as NH4NO3). Initial KCl-extractable NH4+–N, NO3?–N and DON averaged 176?±?6, 54?±?0.2, and 3580?±?40 ng N cm?3, respectively, with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Net ammonification, nitrification, and DON production averaged 3.8?±?0.3, 1.6?±?0.2, and 14.3?±?2.0 ng N cm?3 d?1, also with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Our hypothesis that N mineralization would be stimulated after fire because root death would create a pulse of labile soil organic C was not supported, most likely because ericaceous plant roots typically are not killed in boreal bog wildfires. The absence of any N mineralization response to experimental N addition is most likely a result of rapid immobilization of added NH4+–N and NO3?–N in peat with a wide C:N ratio. In these boreal bogs, belowground N cycling is likely characterized by large DON pools that turn over relatively slowly and small DIN pools that turn over relatively rapidly. For Alberta bogs that have persisted at historically low N deposition values and begin to receive higher N deposition related to anthropogenic activities, peat N mineralization processes may be largely unaffected until the peat C:N ratio reaches a point that no longer favors immobilization of NH4+–N and NO3?–N.  相似文献   

20.
Schaaf  W. 《Plant and Soil》1995,(1):505-511
Main objective of this study was to test the effects of Mg(OH)2-fertilization in a Norway spruce ecosystem showing severe symptoms of Mg-deficiency.The site is characterized by high atmospheric inputs with deposition rates of 1.25 kg H, 42 kg S, and 32 kg N per ha and year. The typic Dystrochrept derived from granite is acidified down to greater depths. The pH-values in soil solution of the organic surface layer and the upper mineral soil are around 3.5. Concentrations of Al, SO4 2-, and especially NO3 - and DOC are very high. The element balance indicates a significant influence of N-inputs and processes of N-turnover on the chemical status of the soil and probably on tree nutrition. Nitrification in the upper mineral soil leads to a transformation of a major part of NH4 + into NO3 -, which is quantitatively leached, resulting in an ecosystem-internal H+-production of 1.8 keq ha-1yr-1. NO3 - and SO4 2- govern the seepage output from the ecosystem.Mg(OH)2 fertilization resulted in manifold increased Mg2+ concentrations in soil solution down to 70 cm soil depth and to a significant increase of pH down to 25 cm mineral soil depth. Nitrate concentrations were elevated after fertilization, but decreased within 15 months below the level of the control plot. As a mean over the whole experimental period, N-output was not increased by fertilization. Despite an elevated internal proton production due to nitrification, acid buffering in the soil was clearly increased, but enhanced Al-mobilization was not observed. Mg/Al- and Ca/H-ratios in soil solution indicate much more favourable conditions for fine root growth. Fertilization also increased the amount of exchangeable Mg down to 40cm mineral soil depth. Mg contents in current-year needles increased after three vegetation periods. Thirty months after application, only 10% and 4% of the fertilized Mg had left the organic surface layer and the mineral soil with seepage water output, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号