首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
As more and more protein structures are determined, it has become clear that there is only a limited number of protein folds in nature. To explore whether the protein folds found in nature are the only solutions to the protein folding problem, or that a lack of evolutionary pressure causes the paucity of different protein folds found, we set out to construct protein libraries without any restriction on topology. We generated different libraries (all alpha-helix, all beta-strand and alpha-helix plus beta-strand) with an average length of 100 amino acid residues, composed of designed secondary structure modules (alpha-helix, beta-strand and beta-turn) in various proportions, based primarily on the patterning of polar and non-polar residues. From the analysis of proteins chosen randomly from the libraries, we found that a substantial portion of pure alpha-helical proteins show properties similar to native proteins. Using these libraries as a starting point, we aim to establish a selection system which allows us to enrich proteins with favorable folding properties (non-aggregating, compactly folded) from the libraries. We have developed such a method based on ribosome display. This selection is based on two concepts: (1) misfolded proteins are more sensitive to proteolysis, (2) misfolded and/or aggregated proteins are more hydrophobic. We show that by applying each of these selection criteria proteins that are compactly folded and soluble can be enriched over insoluble and random coil proteins.  相似文献   

2.
A simple approach to estimate the number of alpha-helical and beta-strand segments from protein circular dichroism spectra is described. The alpha-helix and beta-sheet conformations in globular protein structures, assigned by DSSP and STRIDE algorithms, were divided into regular and distorted fractions by considering a certain number of terminal residues in a given alpha-helix or beta-strand segment to be distorted. The resulting secondary structure fractions for 29 reference proteins were used in the analyses of circular dichroism spectra by the SELCON method. From the performance indices of the analyses, we determined that, on an average, four residues per alpha-helix and two residues per beta-strand may be considered distorted in proteins. The number of alpha-helical and beta-strand segments and their average length in a given protein were estimated from the fraction of distorted alpha-helix and beta-strand conformations determined from the analysis of circular dichroism spectra. The statistical test for the reference protein set shows the high reliability of such a classification of protein secondary structure. The method was used to analyze the circular dichroism spectra of four additional proteins and the predicted structural characteristics agree with the crystal structure data.  相似文献   

3.
To realize a practical high-throughput protein-detection system, novel peptide arrays have been constructed using designed peptide libraries with loop, alpha-helix, or beta-strand structures. Here, we describe the overview of the reported designed peptide arrays with loop and alpha-helix structures and the new results of those with beta-strand structures. Initially, several model peptides known to interact with model structured proteins were selected to establish the present strategy for high-throughput detection of proteins. The fluorescent probes and suitable scaffolds of peptides were examined for the effective detection of proteins. The detection methods were established in solution and in an immobilized manner using the model systems. In the case of alpha-helix peptide, the response of a peptide with fluorescent resonance energy transfer between two probes at both termini was several times higher than that of a peptide with a single probe. In the cases of peptides with other structures, however, proteins were effectively detectable even by the fluorescent change of one probe. Furthermore, structurally focused libraries consisting of a total of ca. 250 different peptides based on the model peptides with secondary and/or tertiary structures were constructed with systematic replacement of residues. Using these libraries, various proteins were characterized effectively to give their own fluorescent "protein fingerprint" patterns. The resulting protein fingerprints correlated with the recognition properties of the proteins. These studies demonstrate that arrays with peptide libraries based on designed structures can be promising tools for detecting the target proteins. Designed synthetic peptides play roles as the capturing agents to be developed for practical protein chips.  相似文献   

4.
The conversion from an alpha-helix to a beta-strand has received extensive attention since this structural change may induce many amyloidogenic proteins to self-assemble into fibrils and cause fatal diseases. Here we report the conversion of a peptide segment from a beta-strand to an alpha-helix by a single-site mutation as observed in the crystal structure of Fis mutant Pro26Ala determined at 2.0 A resolution. Pro26 in Fis occurs at the point where a flexible extended beta-hairpin arm leaves the core structure. Thus it can be classified as a "hinge proline" located at the C-terminal end of the beta2-strand and the N-terminal cap of the A alpha-helix. The replacement of Pro26 to alanine extends the A alpha-helix for two additional turns in one of the dimeric subunits; therefore, the structure of the peptide from residues 22 to 26 is converted from a beta-strand to an alpha-helix. This result confirms the structural importance of the proline residue located at the hinge region and may explain the mutant''s reduced ability to activate Hin-catalyzed DNA inversion. The peptide (residues 20 to 26) in the second monomer subunit presumably retains its beta-strand conformation in the crystal; therefore, this peptide shows a "chameleon-like" character since it can adopt either an alpha-helix or a beta-strand structure in different environments. The structure of Pro26Ala provides an additional example where not only the protein sequence, but also non-local interactions determine the secondary structure of proteins.  相似文献   

5.
PDZ domains are widespread protein modules that commonly recognize C-terminal sequences of target proteins and help to organize macromolecular signaling complexes. These sequences usually bind in an extended conformation to relatively shallow grooves formed between a beta-strand and an alpha-helix in the corresponding PDZ domains. Because of this binding mode, many PDZ domains recognize primarily the C-terminal and the antepenultimate side-chains of the target protein, which commonly conform to motifs that have been categorized into different classes. However, an increasing number of PDZ domains have been found to exhibit unusual specificities. These include the PDZ domain of RIMs, which are large multidomain proteins that regulate neurotransmitter release and help to organize presynaptic active zones. The RIM PDZ domain binds to the C-terminal sequence of ELKS with a unique specificity that involves each of the four ELKS C-terminal residues. To elucidate the structural basis for this specificity, we have determined the 3D structure in solution of an RIM/ELKS C-terminal peptide complex using NMR spectroscopy. The structure shows that the RIM PDZ domain contains an unusually deep and narrow peptide-binding groove with an exquisite shape complementarity to the four ELKS C-terminal residues in their bound conformation. This groove is formed, in part, by a set of side-chains that is conserved selectively in RIM PDZ domains and that hence determines, at least in part, their unique specificity.  相似文献   

6.
The profile method, for detecting distantly related proteins by sequence comparison, has been extended to incorporate secondary structure information from known X-ray structures. The sequence of a known structure is aligned to sequences of other members of a given folding class. From the known structure, the secondary structure (alpha-helix, beta-strand or "other") is assigned to each position of the aligned sequences. As in the standard profile method, a position-dependent scoring table, termed a profile, is calculated from the aligned sequences. However, rather than using the standard Dayhoff mutation table in calculating the profile, we use distinct amino acid mutation tables for residues in alpha-helices, beta-strands or other secondary structures to calculate the profile. In addition, we also distinguish between internal and external residues. With this new secondary structure-based profile method, we created a profile for eight-stranded, antiparallel beta barrels of the insecticyanin folding class. It is based on the sequences of retinol-binding protein, insecticyanin and beta-lactoglobulin. Scanning the sequence database with this profile, it was possible to detect the sequence of avidin. The structure of streptavidin is known, and it appears to be distantly related to the antiparallel beta barrels. Also detected is the sequence of complement component C8, which we therefore predict to be a member of this folding class.  相似文献   

7.
Improving the prediction of secondary structure of 'TIM-barrel' enzymes.   总被引:1,自引:0,他引:1  
The information contained in aligned sets of homologous protein sequences should improve the score of secondary structure prediction. Seven different enzymes having the (beta/alpha)8 or TIM-barrel fold were used to optimize the prediction with regard to this class of enzymes. The alpha-helix, beta-strand and loop propensities of the Garnier-Osguthorpe-Robson method were averaged at aligned residue positions, leading to a significant improvement over the average score obtained from single sequences. The increased accuracy correlates with the average sequence variability of the aligned set. Further improvements were obtained by using the following averaged properties as weights for the averaged state propensities: amphipathic moment and alpha-helix; hydropathy and beta-strand; chain flexibility and loop. The clustering of conserved residues at the C-terminal ends of the beta-strands was used as an additional positive weight for beta-strand propensity and increased the prediction of otherwise unpredicted beta-strands decisively. The automatic weighted prediction method identifies greater than 95% of the secondary structure elements of the set of seven TIM-barrel enzymes.  相似文献   

8.
Yoon S  Welsh WJ 《Proteins》2005,60(1):110-117
We have previously demonstrated that calculation of contact-dependent secondary structure propensity (CSSP) is highly sensitive in detecting non-native beta-strand propensities in the core sequences of known amyloidogenic proteins. Here we describe a CSSP method based on an artificial neural network that rapidly and accurately quantifies the influence of tertiary contacts (TCs) on secondary structure propensity in local regions of protein sequences. The present method exhibited 72% accuracy in predicting the alternate secondary structure adopted by chameleon sequences located in highly disparate TC regions. Analysis of 1930 nonhomologous protein domains reveals that the alpha-helix and the beta-strand largely share the same sequence context, and that tertiary context is a major determinant of the native conformation. Conversely, it appears that the propensity of random coils for either the alpha-helix or the beta-strand is largely invariant to tertiary effects. The present CSSP method successfully reproduced the amyloidogenic character observed in local regions of the human islet amyloid polypeptide (hIAPP). Furthermore, CSSP profiles were strongly correlated (r = 0.76) with the observed mutational effects on the aggregation rate of acylphosphatase. Taken together, these results provide compelling evidence in support of the present CSSP approach as a sensitive probe useful for analysis of full-length proteins and for detection of core sequences that may trigger amyloid fibril formation. The combined speed and simplicity of the CSSP method lends itself to proteome-wide analysis of the amyloidogenic nature of common proteins.  相似文献   

9.
10.
A multiple alignment of five (beta/alpha)8-barrel enzymes has been derived from their structure. The eight beta-strands and eight alpha-helices of the (beta/alpha)8-barrel are correctly aligned and the equivalenced residues in these regions fulfil similar structural roles. Each beta-strand has a central core of usually four residues, two residues contribute side-chains to the barrel core and the other two residues are involved in beta-strand/alpha-helix contacts. However, the fold imposes no constraints on the volumes of the residues at either a local or global level: the volume of the beta-barrel core varies between 1088 A3 in glycolate oxidase and 1571 A3 in taka-amylase. Sequence motifs derived from the multiple alignment were scanned against a database of 124 protein sequences, including 17 (beta/alpha)8-barrel enzymes. The results were evaluated in terms of the discrimination of (beta/alpha)8-barrel sequences and the quality of the alignments obtained. One motif was able to identify the top 12% of high scoring sequences as forming (beta/alpha)8-barrels with 50% accuracy and the bottom 50% of sequences as not being (beta/alpha)8-barrel proteins with 100% accuracy. However, in most instances the alignments were poor. The reasons for this are discussed with reference to the (beta/alpha)8-barrel proteins and the sequence motif method in general.  相似文献   

11.
Many interesting proteins possess defined sequence stretches containing negatively charged amino acids. At present, experimental methods (X-ray crystallography, NMR) have failed to provide structural data for many of these sequence domains. We have applied the dihedral probability grid-Monte Carlo (DPG-MC) conformational search algorithm to a series of N- and C-capped polyelectrolyte peptides, (Glu)20, (Asp)20, (PSer)20, and (PSer-Asp)10, that represent polyanionic regions in a number of important proteins, such as parathymosin, calsequestrin, the sodium channel protein, and the acidic biomineralization proteins. The atomic charges were estimated from charge equilibration and the valence and van der Waals parameters are from DREIDING. Solvation of the carboxylate and phosphate groups was treated using sodium counterions for each charged side chain (one Na+ for COO-; two Na for CO(PO3)-2) plus a distance-dependent (shielded) dielectric constant, epsilon = epsilon 0 R, to simulate solvent water. The structures of these polyelectrolyte polypeptides were obtained by the DPG-MC conformational search with epsilon 0 = 10, followed by calculation of solvation energies for the lowest energy conformers using the protein dipole-Langevin dipole method of Warshel. These calculations predict a correlation between amino acid sequence and global folded conformational minima: 1. Poly-L-Glu20, our structural benchmark, exhibited a preference for right-handed alpha-helix (47% helicity), which approximates experimental observations of 55-60% helicity in solution. 2. For Asp- and PSer-containing sequences, all conformers exhibited a low preference for right-handed alpha-helix formation (< or = 10%), but a significant percentage (approximately 20% or greater) of beta-strand and beta-turn dihedrals were found in all three sequence cases: (1) Aspn forms supercoil conformers, with a 2:1:1 ratio of beta-turn:beta-strand:alpha-helix dihedral angles; (2) PSer20 features a nearly 1:1 ratio of beta-turn:beta-sheet dihedral preferences, with very little preference for alpha-helical structure, and possesses short regions of strand and turn combinations that give rise to a collapsed bend or hairpin structure; (3) (PSer-Asp)10 features a 3:2:1 ratio of beta-sheet:beta-turn:alpha-helix and gives rise to a superturn or C-shaped structure.  相似文献   

12.
P A Rice  A Goldman  T A Steitz 《Proteins》1990,8(4):334-340
By exhaustive structural comparisons, we have found that about one-third of the alpha-helix-turn-beta-strand polypeptides in alpha-beta barrel domains share a common structural motif. The chief characteristics of this motif are that first, the geometry of the turn between the alpha-helix and the beta-strand is somewhat constrained, and second, the beta-strand contains a hydrophobic patch that fits into a hydrophobic pocket on the alpha-helix. The geometry of the turn does not seem to be a major determinant of the alpha-beta unit, because the turns vary in length from four to six residues. However, the motif does not occur when there are few constraints on the geometry of the turn-for instance, when the turns between the alpha-helix and the beta-strands are very long. It also occurs much less frequently in flat-sheet alpha-beta proteins, where the topology is much less regular and the amount of twist on the sheet varies considerably more than in the barrel proteins. The motif may be one of the basic building blocks from which alpha-beta barrels are constructed.  相似文献   

13.
The structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H(2)O and D(2)O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand ( approximately 7%) and a larger amount assigned to turns and nonregular structures ( approximately 29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four alpha-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an alpha protein, and show the value of using both methodologies for protein structure investigation.  相似文献   

14.
Steward RE  Thornton JM 《Proteins》2002,48(2):178-191
An information theory approach was developed to predict the alignment of interacting antiparallel and parallel beta-strands. Information scores were derived for the preference of a residue on a beta-strand to be opposite a sequence of residues on an adjacent beta-strand. These scores were used to predict the interstrand register of interacting beta-strands from 10 alternative offset positions either side of the experimentally observed beta-sheet register. The amino acid sequence of an internal beta-strand can be correctly aligned with two beta-strands in a fixed position either side of the strand in 45% of antiparallel and 48% of parallel arrangements. For comparison, when another beta-strand from a nonhomologous protein substitutes the internal beta-strand, the same register is predicted for only 24 and 36% of antiparallel and parallel arrangements. As expected, alignment of a single fixed strand with just a second beta-strand sequence was more difficult, and gave a correct register in 31 and 37% of antiparallel and parallel beta-pairs, respectively. These scores are 10% higher than for two randomly selected beta-strand sequences. In general, prediction accuracy was not improved by information tables that distinguished hydrogen-bonding patterns or beta-strand order. These results will contribute to predicting the arrangement of beta-strands in beta-pleated sheets and protein topology.  相似文献   

15.
Ethylenediamine-tetraacetic acid extracted water-soluble matrix proteins in molluscan shells secreted from the mantle epithelia are believed to control crystal nucleation, morphology, orientation, and phase of the deposited mineral. Previously, atomic force microscopy demonstrated that abalone nacre proteins bind to growing step edges and to specific crystallographic faces of calcite, suggesting that inhibition of calcite growth may be one of the molecular processes required for growth of the less thermodynamically stable aragonite phase. Previous experiments were done with protein mixtures. To elucidate the role of single proteins, we have characterized two proteins isolated from the aragonitic component of nacre of the red abalone, Haliotis rufescens. These proteins, purified by hydrophobic interaction chromatography, are designated AP7 and AP24 (aragonitic protein of molecular weight 7 kDa and 24 kDa, respectively). Degenerate oligonucleotide primers corresponding to N-terminal and internal peptide sequences were used to amplify cDNA clones by a polymerase chain reaction from a mantle cDNA library; the deduced primary amino acid sequences are presented. Preliminary crystal growth experiments demonstrate that protein fractions enriched in AP7 and AP24 produced CaCO(3) crystals with morphology distinct from crystals grown in the presence of the total mixture of soluble aragonite-specific proteins. Peptides corresponding to the first 30 residues of the N-terminal sequences of both AP7 and AP24 were generated. The synthetic peptides frustrate the progression of step edges of a growing calcite surface, indicating that sequence features within the N-termini of AP7 and AP24 include domains that interact with CaCO(3). CD analyses demonstrate that the N-terminal peptide sequences do not possess significant percentages of alpha-helix or beta-strand secondary structure in solution. Instead, in both the presence and absence of Ca(II), the peptides retain unfolded conformations that may facilitate protein-mineral interaction.  相似文献   

16.
GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins.  相似文献   

17.
An alpha-helix and a beta-strand are said to be interactively packed if at least one residue in each of the secondary structural elements loses 10% of its solvent accessible contact area on association with the other secondary structural element. An analysis of all such 5,975 nonidentical alpha/beta units in protein structures, defined at < or = 2.5 A resolution, shows that the interaxial distance between the alpha-helix and the beta-strand is linearly correlated with the residue-dependent function, log[(V/nda)/n-int], where V is the volume of amino acid residues in the packing interface, nda is the normalized difference in solvent accessible contact area of the residues in packed and unpacked secondary structural elements, and n-int is the number of residues in the packing interface. The beta-sheet unit (beta u), defined as a pair of adjacent parallel or antiparallel hydrogen-bonded beta-strands, packing with an alpha-helix shows a better correlation between the interaxial distance and log(V/nda) for the residues in the packing interface. This packing relationship is shown to be useful in the prediction of interaxial distances in alpha/beta units using the interacting residue information of equivalent alpha/beta units of homologous proteins. It is, therefore, of value in comparative modeling of protein structures.  相似文献   

18.
Accurately predicted protein secondary structure provides useful information for target selection, to analyze protein function and to predict higher dimensional structure. Existing research shows that more data + refined search = better prediction. We analyze relation between the prediction accuracy and another crucial factor, the protein size. Empirical tests performed with two secondary structure predictors on a large set of high-resolution, non-redundant proteins show that the average accuracies for small proteins (<100 residues) equal 73% and 54% for alpha-helices and beta-strands, respectively. The alpha-helix/beta-strand accuracies for very large proteins (>300 residues) equal 77%/68%, respectively. Similarly, the tests with three secondary structure content predictors show that the prediction errors for the small/very large proteins equal 0.13/0.09 and 0.09/0.06 for alpha-helix and beta-strand content, respectively. Our tests confirm that the secondary structure/content predictions for the very large proteins are characterized statistically significantly better quality than prediction for the small proteins. This is in contrast with the tertiary structure predictions in which higher accuracy is obtained for smaller proteins.  相似文献   

19.
To improve secondary structure predictions in protein sequences, the information residing in multiple sequence alignments of substituted but structurally related proteins is exploited. A database comprised of 70 protein families and a total of 2,500 sequences, some of which were aligned by tertiary structural superpositions, was used to calculate residue exchange weight matrices within alpha-helical, beta-strand, and coil substructures, respectively. Secondary structure predictions were made based on the observed residue substitutions in local regions of the multiple alignments and the largest possible associated exchange weights in each of the three matrix types. Comparison of the observed and predicted secondary structure on a per-residue basis yielded a mean accuracy of 72.2%. Individual alpha-helix, beta-strand, and coil states were respectively predicted at 66.7, and 75.8% correctness, representing a well-balanced three-state prediction. The accuracy level, verified by cross-validation through jack-knife tests on all protein families, dropped, on average, to only 70.9%, indicating the rigor of the prediction procedure. On the basis of robustness, conceptual clarity, accuracy, and executable efficiency, the method has considerable advantage, especially with its sole reliance on amino acid substitutions within structurally related proteins.  相似文献   

20.
We present a novel approach to design repeat proteins of the leucine-rich repeat (LRR) family for the generation of libraries of intracellular binding molecules. From an analysis of naturally occurring LRR proteins, we derived the concept to assemble repeat proteins with randomized surface positions from libraries of consensus repeat modules. As a guiding principle, we used the mammalian ribonuclease inhibitor (RI) family, which comprises cytosolic LRR proteins known for their extraordinary affinities to many RNases. By aligning the amino acid sequences of the internal repeats of human, pig, rat, and mouse RI, we derived a first consensus sequence for the characteristic alternating 28 and 29 amino acid residue A-type and B-type repeats. Structural considerations were used to replace all conserved cysteine residues, to define less conserved positions, and to decide where to introduce randomized amino acid residues. The so devised consensus RI repeat library was generated at the DNA level and assembled by stepwise ligation to give libraries of 2-12 repeats. Terminal capping repeats, known to shield the continuous hydrophobic core of the LRR domain from the surrounding solvent, were adapted from human RI. In this way, designed LRR protein libraries of 4-14 LRRs (equivalent to 130-415 amino acid residues) were obtained. The biophysical analysis of randomly chosen library members showed high levels of soluble expression in the Escherichia coli cytosol, monomeric behavior as characterized by gel-filtration, and alpha-helical CD spectra, confirming the success of our design approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号