共查询到20条相似文献,搜索用时 0 毫秒
1.
Fgf3 and Fgf10 are required for mouse otic placode induction 总被引:1,自引:0,他引:1
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation. 相似文献
2.
The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction and differentiation of the ear placode. In addition to the early requirement for Fgf signaling, the abnormal differentiation of inner ear structures and mechanosensory hair cells in ace mutants, pharmacological inhibition of Fgf signaling, and the expression of fgf8 and fgf3 in the otic vesicle demonstrate independent Fgf function(s) during later development of the otic vesicle and lateral line organ. We furthermore addressed a potential role of endomesomerm by studying mzoep mutant embryos that are depleted of head endomesodermal tissue, including chordamesoderm, due to a lack of Nodal-pathway signaling. In these embryos, early placode induction proceeds largely normally, but the ear placode extends abnormally to midline levels at later stages, suggesting a role for the midline in restricting placode development to dorsolateral levels. We suggest a model of zebrafish inner ear development with several discrete steps that utilize sequential Fgf signals during otic placode induction and vesicle patterning. 相似文献
3.
4.
5.
More than a century ago, several embryologists described sites of hematopoietic activity in the vascular wall of mid-gestation vertebrate embryos, and postulated the transient existence of a blood generating endothelium during ontogeny. This hypothesis gained significant attention in the 1970s when orthotopic transplantation experiments between quail and chick embryos revealed specific vascular areas as the site of the origin of definitive hematopoiesis. However, the vascular origin of hematopoietic precursors remained elusive and controversial for decades. Only recently, multiple experimental approaches have clearly documented that during vertebrate development definitive hematopoietic precursors arise from a subset of vascular endothelial cells. Interestingly, this differentiation is promoted by the intravascular fluid mechanical forces generated by the establishment of blood flow upon the initiation of heartbeat, and it is therefore connected with cardiovascular development in several critical aspects. In this review we present our current understanding of the relationship between vascular and definitive hematopoietic development through an historical analysis of the scientific evidence produced in this area of investigation. 相似文献
6.
Induction of the otic placode, which gives rise to all tissues comprising the inner ear, is a fundamental aspect of vertebrate development. A number of studies indicate that fibroblast growth factor (Fgf), especially Fgf3, is necessary and sufficient for otic induction. However, an alternative model proposes that Fgf must cooperate with Wnt8 to induce otic differentiation. Using a genetic approach in zebrafish, we tested the roles of Fgf3, Fgf8 and Wnt8. We demonstrate that localized misexpression of either Fgf3 or Fgf8 is sufficient to induce ectopic otic placodes and vesicles, even in embryos lacking Wnt8. Wnt8 is expressed in the hindbrain around the time of otic induction, but loss of Wnt8 merely delays expression of preotic markers and otic vesicles form eventually. The delay in otic induction correlates closely with delayed expression of fgf3 and fgf8 in the hindbrain. Localized misexpression of Wnt8 is insufficient to induce ectopic otic tissue. By contrast, global misexpression of Wnt8 causes development of supernumerary placodes/vesicles, but this reflects posteriorization of the neural plate and consequent expansion of the hindbrain expression domains of Fgf3 and Fgf8. Embryos that misexpress Wnt8 globally but are depleted for Fgf3 and Fgf8 produce no otic tissue. Finally, cells in the preotic ectoderm express Fgf (but not Wnt) reporter genes. Thus, preotic cells respond directly to Fgf but not Wnt8. We propose that Wnt8 serves to regulate timely expression of Fgf3 and Fgf8 in the hindbrain, and that Fgf from the hindbrain then acts directly on preplacodal cells to induce otic differentiation. 相似文献
7.
Gbx2 and Fgf8 are sequentially required for formation of the midbrain-hindbrain compartment boundary
In vertebrates, the common expression border of two homeobox genes, Otx2 and Gbx2, demarcates the prospective midbrain-hindbrain border (MHB) in the neural plate at the end of gastrulation. The presence of a compartment boundary at the MHB has been demonstrated, but the mechanism and timing of its formation remain unclear. We show by genetic inducible fate mapping using a Gbx2(CreER) knock-in mouse line that descendants of Gbx2(+) cells as early as embryonic day (E) 7.5 do not cross the MHB. Without Gbx2, hindbrain-born cells abnormally populate the entire midbrain, demonstrating that Gbx2 is essential for specifying hindbrain fate. Gbx2(+) and Otx2(+) cells segregate from each other, suggesting that mutually exclusive expression of Otx2 and Gbx2 in midbrain and hindbrain progenitors is responsible for cell sorting in establishing the MHB. The MHB organizer gene Fgf8, which is expressed as a sharp transverse band immediately posterior to the lineage boundary at the MHB, is crucial in maintaining the lineage-restricted boundary after E7.5. Partial deletion of Fgf8 disrupts MHB lineage separation. Activation of FGF pathways has a cell-autonomous effect on cell sorting in midbrain progenitors. Therefore, Fgf8 from the MHB may signal the nearby mesencephalic cells to impart distinct cell surface characteristics or induce local cell-cell signaling, which consequently prevents cell movements across the MHB. Our findings reveal the distinct function of Gbx2 and Fgf8 in a stepwise process in the development of the compartment boundary at the MHB and that Fgf8, in addition to its organizer function, plays a crucial role in maintaining the lineage boundary at the MHB by restricting cell movement. 相似文献
8.
Induction of the otic placode, the rudiment of the inner ear, is believed to depend on signals derived from surrounding tissues, the head mesoderm and the prospective hindbrain. Here we report the first attempt to define the specific contribution of the neuroectoderm to this inductive process in Xenopus. To this end we tested the ability of segments of the neural plate (NP), isolated from different axial levels, to induce the otic marker Pax8 when recombined with blastula stage animal caps. We found that one single domain of the NP, corresponding to the prospective anterior hindbrain, had Pax8-inducing activity in this assay. Surprisingly, more than half of these recombinants formed otic vesicle-like structures. Lineage tracing experiments indicate that these vesicle-like structures are entirely derived from the animal cap and express several pan-otic markers. Pax8 activation in these recombinants requires active Fgf and canonical Wnt signaling, as interference with either pathway blocks Pax8 induction. Furthermore, we demonstrate that Fgf and canonical Wnt signaling cooperate to activate Pax8 expression in isolated animal caps. We propose that in the absence of mesoderm cues the combined activity of hindbrain-derived Wnt and Fgf signals specifies the otic placode in Xenopus, and promotes its morphogenesis into an otocyst. 相似文献
9.
Specification of the otic anteroposterior axis is one of the earliest patterning events during inner ear development. In zebrafish, Hedgehog signalling is necessary and sufficient to specify posterior otic identity between the 10 somite (otic placode) and 20 somite (early otic vesicle) stages. We now show that Fgf signalling is both necessary and sufficient for anterior otic specification during a similar period, a function that is completely separable from its earlier role in otic placode induction. In lia(-/-) (fgf3(-/-)) mutants, anterior otic character is reduced, but not lost altogether. Blocking all Fgf signalling at 10-20 somites, however, using the pan-Fgf inhibitor SU5402, results in the loss of anterior otic structures and a mirror image duplication of posterior regions. Conversely, overexpression of fgf3 during a similar period, using a heat-shock inducible transgenic line, results in the loss of posterior otic structures and a duplication of anterior domains. These phenotypes are opposite to those observed when Hedgehog signalling is altered. Loss of both Fgf and Hedgehog function between 10 and 20 somites results in symmetrical otic vesicles with neither anterior nor posterior identity, which, nevertheless, retain defined poles at the anterior and posterior ends of the ear. These data suggest that Fgf and Hedgehog act on a symmetrical otic pre-pattern to specify anterior and posterior otic identity, respectively. Each signalling pathway has instructive activity: neither acts simply to repress activity of the other, and, together, they appear to be key players in the specification of anteroposterior asymmetries in the zebrafish ear. 相似文献
10.
11.
Lilleväli K Haugas M Matilainen T Pussinen C Karis A Salminen M 《Mechanisms of development》2006,123(6):415-429
Inner ear develops from an induced surface ectoderm placode that invaginates and closes to form the otic vesicle, which then undergoes a complex morphogenetic process to form the membranous labyrinth. Inner ear morphogenesis is severely affected in Gata3 deficient mouse embryos, but the onset and basis of the phenotype has not been known. We show here that Gata3 deficiency leads to severe and unique abnormalities during otic placode invagination. The invagination problems are accompanied often by the formation of a morphological boundary between the dorsal and ventral otic cup and by the precocious appearance of dorsal endolymphatic characteristics. In addition, the endolymphatic domain often detaches from the rest of the otic epithelium during epithelial closure. The expression of several cell adhesion mediating genes is altered in Gata3 deficient ears suggesting that Gata3 controls adhesion and morphogenetic movements in early otic epithelium. Inactivation of Gata3 leads also to a loss of Fgf10 expression in otic epithelium and auditory ganglion demonstrating that Gata3 is an important regulator of Fgf-signalling during otic development. 相似文献
12.
Extensive cell movements accompany formation of the otic placode 总被引:11,自引:0,他引:11
Streit A 《Developmental biology》2002,245(2):237-254
A centrally important factor in initiating egg activation at fertilization is a rise in free Ca(2+) in the egg cytosol. In echinoderm, ascidian, and vertebrate eggs, the Ca(2+) rise occurs as a result of inositol trisphosphate-mediated release of Ca(2+) from the endoplasmic reticulum. The release of Ca(2+) at fertilization in echinoderm and ascidian eggs requires SH2 domain-mediated activation of a Src family kinase (SFK) and phospholipase C (PLC)gamma. Though some evidence indicates that a SFK and PLC may also function at fertilization in vertebrate eggs, SH2 domain-mediated activation of PLC gamma appears not to be required. Much work has focused on identifying factors from sperm that initiate egg activation at fertilization, either as a result of sperm-egg contact or sperm-egg fusion. Current evidence from studies of ascidian and mammalian fertilization favors a fusion-mediated mechanism; this is supported by experiments indicating that injection of sperm extracts into eggs causes Ca(2+) release by the same pathway as fertilization. 相似文献
13.
Hearing loss is a serious burden to physical and mental health worldwide. Aberrant development and damage of hearing organs are recognized as the causes of hearing loss, the molecular mechanisms underlining these pathological processes remain elusive. Investigation of new molecular mechanisms involved in proliferation, differentiation, migration and maintenance of neuromast primordium and hair cells will contribute to better understanding of hearing loss pathology. This knowledge will enable the development of protective agents and mechanism study of drug ototoxicity. In this study, we demonstrate that the zebrafish gene miles-apart, a homolog of sphingosine-1-phosphate receptor 2 (s1pr2) in mammals, has an important role in the development of otic vesicle, neuromasts and survival of hair cells. Whole-mount in situ hybridization of embryos showed that miles-apart expression occurred mainly in the encephalic region and the somites at 24 h.p.f. (hour post fertilization), in the midbrain/hindbrain boundary, the brainstem and the pre-neuromast of lateral line at 48 h.p.f. in a strict spatiotemporal regulation. Both up- and downregulation of miles-apart led to abnormal otoliths and semicircular canals, excess or few hair cells and neuromasts, and their disarranged depositions in the lateral lines. Miles-apart (Mil) dysregulation also caused abnormal expression of hearing-associated genes, including hmx2, fgf3, fgf8a, foxi1, otop1, pax2.1 and tmieb during zebrafish organogenesis. Moreover, in larvae miles-apart gene knockdown significantly upregulated proapoptotic gene zBax2 and downregulated prosurvival gene zMcl1b; in contrast, the level of zBax2 was decreased and of zMcl1b enhanced by miles-apart overexpression. Collectively, Mil activity is linked to organization and number decision of hair cells within a neuromast, also to deposition of neuromasts and formation of otic vesicle during zebrafish organogenesis. At the larva stage, Mil as an upstream regulator of bcl-2 gene family has a role in protection of hair cells against apoptosis by promoting expression of prosurvival gene zMcl1b and suppressing proapoptotic gene zBax2. 相似文献
14.
15.
The otic placode is a transient embryonic structure that gives rise to the inner ear. Although inductive signals for otic placode formation have been characterized, less is known about the molecules that respond to these signals within otic primordia. Here, we identify a mutation in zebrafish, hearsay, which disrupts the initiation of placode formation. We show that hearsay disrupts foxi1, a forkhead domain-containing gene, which is expressed in otic precursor cells before placodes become visible; foxi1 appears to be the earliest marker known for the otic anlage. We provide evidence that foxi1 regulates expression of pax8, indicating a very early role for this gene in placode formation. In addition, foxi1 is expressed in the developing branchial arches, and jaw formation is disrupted in hearsay mutant embryos. 相似文献
16.
The development of the vertebrate inner ear is a complex process that has been investigated in several model organisms. In this work, we examined genetic interactions regulating early development of otic structures in medaka. We demonstrate that misexpression of Fgf8, Dlx3b and Foxi1 during early gastrulation is sufficient to produce ectopic otic vesicles. Combined misexpression strongly increases the appearance of this phenotype. By using a heat-inducible promoter we were furthermore able to separate the regulatory interactions among Fgf8, Foxi1, Dlx3b, Pax8 and Pax2 genes, which are active during different stages of early otic development. In the preplacodal stage we suggest a central position of Foxi1 within a regulatory network of early patterning genes including Dlx3b and Pax8. Different pathways are active after the placodal stage with Dlx3b playing a central role. There Dlx3b regulates members of the Pax-Six-Eya-Dach network and also strongly affects the early dorsoventral marker genes Otx1 and Gbx2. 相似文献
17.
Shanmugalingam S Houart C Picker A Reifers F Macdonald R Barth A Griffin K Brand M Wilson SW 《Development (Cambridge, England)》2000,127(12):2549-2561
Fibroblast growth factors (Fgfs) form a large family of secreted signalling proteins that have a wide variety of roles during embryonic development. Within the central nervous system (CNS) Fgf8 is implicated in patterning neural tissue adjacent to the midbrain-hindbrain boundary. However, the roles of Fgfs in CNS tissue rostral to the midbrain are less clear. Here we examine the patterning of the forebrain in zebrafish embryos that lack functional Fgf8/Ace. We find that Ace is required for the development of midline structures in the forebrain. In the absence of Ace activity, midline cells fail to adopt their normal morphology and exhibit altered patterns of gene expression. This disruption to midline tissue leads to severe commissural axon pathway defects, including misprojections from the eye to ectopic ipsilateral and contralateral targets. Ace is also required for the differentiation of the basal telencephalon and several populations of putative telencephalic neurons but not for overall regional patterning of forebrain derivatives. Finally, we show that ace expression co-localises with anterior neural plate cells that have previously been shown to have forebrain patterning activity. Removal of these cells leads to a failure in induction of ace expression indicating that loss of Ace activity may contribute to the phenotypes observed when anterior neural plate cells are ablated. However, as ace mutant neural plate cells still retain at least some inductive activity, then other signals must also be produced by the anterior margin of the neural plate. 相似文献
18.
Hedgehog signalling is required for correct anteroposterior patterning of the zebrafish otic vesicle
Hammond KL Loynes HE Folarin AA Smith J Whitfield TT 《Development (Cambridge, England)》2003,130(7):1403-1417
Currently, few factors have been identified that provide the inductive signals necessary to transform the simple otic placode into the complex asymmetric structure of the adult vertebrate inner ear. We provide evidence that Hedgehog signalling from ventral midline structures acts directly on the zebrafish otic vesicle to induce posterior otic identity. We demonstrate that two strong Hedgehog pathway mutants, chameleon (con(tf18b)) and slow muscle omitted (smu(b641)) exhibit a striking partial mirror image duplication of anterior otic structures, concomitant with a loss of posterior otic domains. These effects can be phenocopied by overexpression of patched1 mRNA to reduce Hedgehog signalling. Ectopic activation of the Hedgehog pathway, by injection of sonic hedgehog or dominant-negative protein kinase A RNA, has the reverse effect: ears lose anterior otic structures and show a mirror image duplication of posterior regions. By using double mutants and antisense morpholino analysis, we also show that both Sonic hedgehog and Tiggy-winkle hedgehog are involved in anteroposterior patterning of the zebrafish otic vesicle. 相似文献
19.
Competence of cranial ectoderm to respond to Fgf signaling suggests a two-step model of otic placode induction 总被引:1,自引:0,他引:1
Vertebrate craniofacial sensory organs derive from ectodermal placodes early in development. It has been suggested that all craniofacial placodes arise from a common ectodermal domain adjacent to the anterior neural plate, and a number of genes have been recently identified that mark such a 'pre-placodal' domain. However, the functional significance of this pre-placodal domain is still unclear. In the present study, we show that Fgf signaling is necessary and sufficient to directly induce some, but not all, markers of the otic placode in ectoderm taken from the pre-placodal domain. By contrast, ectoderm from outside this domain is not competent to express otic markers in response to Fgfs. Grafting na?ve ectoderm into the pre-placodal domain causes upregulation of pre-placodal markers within 8 hours, together with the acquisition of competence to respond to Fgf signaling. This suggests a two-step model of craniofacial placode induction in which ectoderm first acquires pre-placodal region identity, and subsequently differentiates into particular craniofacial placodes under the influence of local inducing signals. 相似文献
20.
The widely held view that neurogenic placodes are vertebrate novelties has been challenged by morphological and molecular data from tunicates suggesting that placodes predate the vertebrate divergence. Here, we examine requirements for the development of the tunicate atrial siphon primordium, thought to share homology with the vertebrate otic placode. In vertebrates, FGF signaling is required for otic placode induction and for later events following placode invagination, including elaboration and patterning of the inner ear. We show that results from perturbation of the FGF pathway in the ascidian Ciona support a similar role for this pathway: inhibition with MEK or Fgfr inhibitor at tailbud stages in Ciona results in a larva which fails to form atrial placodes; inhibition during metamorphosis disrupts development of the atrial siphon and gill slits, structures which form where invaginated atrial siphon ectoderm apposes pharyngeal endoderm. We show that laser ablation of atrial primordium ectoderm also results in a failure to form gill slits in the underlying endoderm. Our data suggest interactions required for formation of the atrial siphon and highlight the role of atrial ectoderm during gill slit morphogenesis. 相似文献