首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations results of human thrombin interaction with organic ligands of ion nature containing nonpolar groups are presented. It is shown that electrostatic interaction is the basic one under enzyme binding, while hydrophobic binding is only additional function in the reaction enzyme-ligand, this fact is confirmed by the absence of interaction between thrombin and rivanol which has a positive charge side by side with cumbrous hydrophobic group. New data are presented about the ligand specificity of binding sites of thrombin active centre. The importance of relative arrangement of hydrophobic ligand groups for interaction with enzyme is shown. It is supposed that thrombin binding with organic ligands occurs owing anionic site of beta-domain of active thrombin centre with the major aminoacids arginine and lysine (Lys 68, Arg 78, Arg 77, Arg 66 etc.). It is shown that the compounds containing negative group SO3 and have some cunbours hydrophobic groups interact more intensively with the enzyme. Thus, rosseline--with symmetrical hydrophobic nucleus (four benzene rings)--is the most efficient ligand for the binding with thrombin. The obtained investigation results evidence for bacteriostatical and stabilizing effect of low-molecular asobenzene ligands on rather labile thrombin molecules.  相似文献   

2.
Temperature inactivation of human thrombin has been studied when finding out the mechanism of this enzyme stabilization by amino acids. Effect of a number of amino acids on thrombin in the conditions (pH) of the highest activity of proteinase has been investigated. It is established that most amino acids are characterized to more or less extent by the protective action, when hampering the temperature inactivation of the enzyme. The correspondence was mainly found between the stabilizing effect of amino acids and thrombin specificity. Thrombin is stabilized by L-arginine and DL-lysine more intensively than by other amino acids. A stabilizing effect of L-glutamic acid was shown in contrast to the action of the latter on trypsin that was obviously connected with the original structure of the active centre of thrombin, that is the availability of anionic binding centre which includes Lys68, Arg72, Arg77. High thrombin stabilization by such amino acids as phenylalanine, DL-serine, DL-methonine was an exception. It was established that amino acids stabilize thrombin with formation of a compound with the reactive centre of its molecule, like the compounds enzyme-substrate. The macrostructure stability probably depends, to a considerable extent, on the state of the enzyme reactive centre: thrombin molecules, which contain a free reactive centre, are more labile than those which reactive centre is bound to the reagent of more or less specific character. The inhibition of the autolysis process may be another manifestation of thrombin stabilization by amino acids.  相似文献   

3.
A process of thrombin interaction with synthetic and natural substrates in the presence of Na+ ions has been analyzed in the survey. Molecular bases of this interaction have been presented, interrelation between the structure and function of thrombin has been noted; the nature of the unique site of its active centre which determines high thrombin affinity for the substrates and increase of its catalytic activity defined by the term of "specificity to univalent cations" have been considered in detail. Na+ ions play the role of allosteric effector in realization of two informational states of thrombin which penform, respectively, two fundamental and competing functions in the process of hemostasis. The molecular basis of the process of Na+ binding with thrombin is rather simple and depends only on the single site which importance for the enzyme function is marked by numerous investigations of a number of authors, and it is shown that Na(+)-binding site is distributed in the other zone of thrombin molecule as compared to exosites I and II, which do not take part in Na(+)-binding and allosteric transduction. Considerable attention was given to conformational conversions of a thrombin molecule caused by Na+ ions binding. It was shown that the transition slow <--> fast of the enzyme forms leads to formation of the ion pair Arg-187: Asp-222, optimal orientation of Asp-189 and Ser-195 for binding of substrates and considerable shift of the lateral chain Glu-192 determined by the disturbance of the lattice of water molecules which connects Na(+)-binding site with aminoacid Ser-195 of the active centre of the enzyme. New data have been presented which indicate that the changes in the lattice of water molecules and allosteric nucleus of Na(+)-binding site of the enzyme are the basic link of raising the affinity between the thrombin and substrate and mechanism of the enzyme activation by Na(+)-ions. The survey touches some problems of creation of allosteric inhibitors of thrombin which can take essential effect on Na(+)-binding site and favor stabilization of the anticoagulant slow-form of thrombin, and of enzyme rational mutants with selective specificity in respect of protein C which display effective and safe anticoagulant and antithrombotic effects in vivo.  相似文献   

4.
Human erythrocyte phosphofructokinase has been subjected to active band centrifugation and stability measurements over a broad range of conditions. The enzyme behaves differently in-Tris buffer containing ATP and phosphate buffer containing fructose 6-phosphate. In the first buffer, dissociation is favoured and after prolonged storage of the enzyme tetramers represent the highest state of association. At 4 degrees C the enzyme exhibits the phenomenon of reversible cold-inactivation. This property is attributed to slow dissociation of the active associated states of the enzyme to dimers. The cold-inactivated enzyme can be reactivated by fructose 1,6-bisphosphate. Inorganic phosphate and fructose 6-phosphate have been found to protect the enzyme from cold-inactivation. Under these conditions, the sedimentation coefficient and the specific activity depend on the enzyme concentration only. The specific activity does not change on storage of the diluted enzyme at 4 degrees C. At 20 degrees C, however, a slow activation proceeds during incubation of the diluted enzyme. The correlations between the association state and the enzymic activity are discussed.  相似文献   

5.
Data concerning peculiarities of fermentative nature and structure of thrombin in water-salt solution have been generalized; regularities of stabilizing effect made on thrombin by various polyols and other substances have been analyzed. It has been shown that formation of thrombin optimum macrostructure is one of the methods of its stabilization. Presence of different dissolving additives changes this enzymes hydration and this affects its stability and activity. There exist some systems to stabilize thrombin solutions. The systems consist of various salts, low-molecular and high-molecular polyols, surfactants, protein chain, composition buffer, etc. It has been shown that optimal concentrations of polyols, buffer salts and surfactants, as well as protein interaction increase considerably thrombin stability, preserving secondary structure even under its low concentration in the solution.  相似文献   

6.
Dirr HW  Wallace LA 《Biochemistry》1999,38(47):15631-15640
Helix 9 at the C-terminus of class alpha glutathione transferase (GST) polypeptides is a unique structural feature in the GST superfamily. It plays an important structural role in the catalytic cycle. Its contribution toward protein stability/folding as well as the binding of nonsubstrate ligands was investigated by protein engineering, conformational stability, enzyme activity, and ligand-binding methods. The helix9 sequence displays an unfavorable propensity toward helix formation, but tertiary interactions between the amphipathic helix and the GST seem to contribute sufficient stability to populate the helix on the surface of the protein. The helix's stability is enhanced further by the binding of ligands at the active site. The order of ligand-induced stabilization increases from H-site occupation, to G-site occupation, to the simultaneous occupation of H- and G-sites. Ligand-induced stabilization of helix9 reduces solvent accessible hydrophobic surface by facilitating firmer packing at the hydrophobic interface between helix and GST. This stabilized form exhibits enhanced affinity for the binding of nonsubstrate ligands to ligandin sites (i.e., noncatalytic binding sites). Although helix9 contributes very little toward the global stability of hGSTA1-1, its conformational dynamics have significant implications for the protein's equilibrium unfolding/refolding pathway and unfolding kinetics. Considering the high concentration of reduced glutathione in human cells (about 10 mM), the physiological form of hGSTA1-1 is most likely the thiol-complexed protein with a stabilized helix9. The C-terminus region (including helix9) of the class alpha polypeptide appears not to have been optimized for stability but rather for catalytic and ligandin function.  相似文献   

7.
Inhibited thrombins. Interactions with fibrinogen and fibrin.   总被引:7,自引:0,他引:7       下载免费PDF全文
Fibrin-monomer-Sepharose was used to study thrombin binding to fibrin and the role of the enzyme active centre in this interaction. Binding properties of preformed enzyme-inhibitor complexes, as well as inhibition of thrombin already adsorbed to fibrin monomer, were investigated. No apparent difference was found in binding properties of phenylmethanesulphonyl fluoride-, D-Phe-Pro-Arg-CH2Cl- and dansylarginine NN-(3-ethylpentane-1,5-diyl)amide-inhibited thrombins. Also, the elution profile of phenylmethane-sulphonyl fluoride-inhibited thrombin from fibrinogen-Sepharose was identical with that of active thrombin from fibrin-monomer-Sepharose. Thus far the only low-Mr inhibitor that prevents thrombin from binding to fibrin monomer is pyridoxal 5'-phosphate. Preformed hirudin-thrombin complexes do not interact with fibrin. The extent to which the active centre of thrombin associated with fibrin is still accessible to substrates and inhibitors was also studied. Thrombin bound to fibrin hydrolyses a synthetic substrate at the same rate as the free enzyme. Water-soluble low-Mr inhibitors such as D-Phe-Pro-Arg-CH2Cl and dansylarginine NN-(3-ethylpentane-1,5-diyl)amide can readily modify the active centre of the fibrin-associated enzyme, and the active centre is exposed to the degree that displacement of dansylarginine NN-(3-ethylpentane-1,5-diyl)amide by D-Phe-Pro-Arg-CH2Cl is possible without disturbing the binding. Hirudin disrupts the affinity between thrombin and fibrin. These data indicate that the active centre of thrombin associated with fibrin through extended binding is fully exposed and freely accessible. It is possible that extended binding may play a regulatory role in the activation of Factor XIII by thrombin, as well as inactivation of this enzyme by antithrombin III.  相似文献   

8.
This study elucidates the role of the protein structure in the catalysis of β-diketone cleavage at the three-histidine metal center of diketone cleaving enzyme (Dke1) by computational methods in correlation with kinetic and mutational analyses. Molecular dynamics simulations, using quantum mechanically deduced parameters for the nonheme Fe(II) cofactor, were performed and showed a distinct organization of the hydrophilic triad in the free and substrate-ligated wild-type enzyme. It is shown that in the free species, the Fe(II) center is coordinated to three histidines and one glutamate, whereas the substrate-ligated, catalytically competent enzyme-substrate complex has an Fe(II) center with three-histidine coordination, with a small fraction of three-histidine, one-glutamate coordination. The substrate binding modes and channels for the traffic of water and ligands (2,4-pentandionyl anion, methylglyoxal, and acetate) were identified. To characterize the impact of the hydrophobic protein environment around the metal center on catalysis, a set of hydrophobic residues close to the active site were targeted. The variations resulted in an up to tenfold decrease of the O(2) reduction rates for the mutants. Molecular dynamics studies revealed an impact of the hydrophobic residues on the substrate stabilization in the active site as well as on the orientations of Glu98 and Arg80, which have previously been shown to be crucial for catalysis. Consequently, the Glu98-His104 interaction in the variants is weaker than in the wild-type complex. The role of protein structure in stabilizing the primary O(2) reduction step in Dke1 is discussed on the basis of our results.  相似文献   

9.
The storage stability of alcohol dehydrogenase from yeast has been considerably improved by the use of additives. Glycerol is an effective cryoprotectant at ?196 and ?20°C. At 4°C, glycerol and dl-α-glycerophosphate are stabilizers, while at 30°C dl-α-glycerophosphate, 3-phosphoglyceric acid, phosphocreatine, 6-phosphogluconic acid, phosphoarginine, phosphoserine and sucrose are examples of stabilizers. While no single mechanism can be adduced, stabilization by NAD+ and 5′-AMP may be attributed to binding at the active centre. Cryoprotection by glycerol is attributed to maintenance of the pH within the range at which the enzyme is stable. dl-α-Glycerophosphate caused a shift of 16°C in the transition temperature of the enzyme, as measured by differential scanning calorimetry.  相似文献   

10.
Data on alpha-chymotrypsin interactions with hydrophobic low-molecular compounds have been generalized. Existence of two sites of noncovalent interaction with hydrophobic nuclei of a ligand molecule is shown. When the substance to be bound contains only one hydrophobic nucleus, the interaction is mediated by a "hydrophobic pocket" of the enzyme--a binding site of amino acid residues which are, in the P1-position relative to the cleaved bond. Under these conditions substances with an asymmetric hydrophobic nucleus (of the tryptophan type) are better ligands for binding. In case of compounds containing several hydrophobic groups scattered in the space, interaction with the enzyme proceeds in two binding sites. New data are presented on the ligand specificity for binding sites of chymotrypsin in lower vertebrates. Relative position of hydrophobic groups of the ligand is shown as that of great importance for interaction with the enzyme. It is concluded that the binding sites of trypsin- and chymotrypsin-like proteinases of the lower vertebrates differ but less from each other as compared to binding sites of trypsin and chymotrypsin in mammals.  相似文献   

11.
The serine protease thrombin proteolytically activates blood coagulation factor XIII by cleavage at residue Arg(37); factor XIII in turn cross-links fibrin molecules and gives mechanical stability to the blood clot. The 2.0-A resolution x-ray crystal structure of human alpha-thrombin bound to the factor XIII-(28-37) decapeptide has been determined. This structure reveals the detailed atomic level interactions between the factor XIII activation peptide and thrombin and provides the first high resolution view of this functionally important part of the factor XIII molecule. A comparison of this structure with the crystal structure of fibrinopeptide A complexed with thrombin highlights several important determinants of thrombin substrate interaction. First, the P1 and P2 residues must be compatible with the geometry and chemistry of the S1 and S2 specificity sites in thrombin. Second, a glycine in the P5 position is necessary for the conserved substrate conformation seen in both factor XIII-(28-37) and fibrinopeptide A. Finally, the hydrophobic residues, which occupy the aryl binding site of thrombin determine the substrate conformation further away from the catalytic residues. In the case of factor XIII-(28-37), the aryl binding site is shared by hydrophobic residues P4 (Val(34)) and P9 (Val(29)). A bulkier residue in either of these sites may alter the substrate peptide conformation.  相似文献   

12.
13.
Human, rabbit and bovine thrombins are shown to possess marked affinities for Sepharose-lysine. Using either Xa-activated crude prothrombins (human, rabbit) or a commercial thrombin sample (bovine), the enzyme was isolated in a single chromatographic step by the affinity medium and preparations of high specific activity were obtained. The relevance of bound-lysine for the affinity of the thrombins was studied using other Sepharose conjugates with structures related to Sepharose-lysine. Using freshly activated prothrombins it was found that human and rabbit thrombin uptake required a conjugate with a spacer chain containing a minimum of four carbon atoms in length which supported a terminal amino group. As the thrombin activity aged, affinity for the terminal amino group decreased but the hydrophobic spacer chain became essential for enzyme binding. The active centre of thrombin was not involved in binding to Sepharose-lysine.  相似文献   

14.
Gorrell A  Ferry JG 《Biochemistry》2007,46(49):14170-14176
Acetate kinase, a member of the acetate and sugar kinase/Hsc 70/actin (ASKHA) structural superfamily, catalyzes the reversible transfer of the gamma-phosphoryl group from ATP to acetate, yielding ADP and acetyl phosphate. A catalytic mechanism for the enzyme from Methanosarcina thermophila has been proposed on the basis of the crystal structure and kinetic analyses of amino acid replacement variants. The Gln43Trp variant was generated to further investigate the catalytic mechanism via changes in fluorescence. The dissociation constants for ADP.Mg2+ and ATP.Mg2+ ligands were determined for the Gln43Trp variant and double variants generated by replacing Arg241 and Arg91 with Ala and Lys. The dissociation constants and kinetic analyses indicated roles for the arginines in transition state stabilization for catalysis but not in nucleotide binding. The results also provide the first experimental evidence for domain motion and evidence that catalysis does not occur as two independent active sites of the homodimer but the active site activities are coordinated in a half-the-sites manner.  相似文献   

15.
Hydrolysis and respective catalytic parameters of hydrolysis of ester peptide substrates that contain residues of hydrophobic and nonpolar amino acids in P2, P3 subsites have been studied. It is shown that efficiency of hydrolysis by thrombin is determined by the length of polypeptide chains and by the nature of the amino acids in P2, P3 subsites in the substrate. In spite of the fact that gamma-thrombin retains the conformation activity of the catalytic centre the local conformation changes of the second binding region of the enzyme have been discovered.  相似文献   

16.
The cold shock protein Bc-Csp from the thermophile Bacillus caldolyticus differs from its mesophilic homolog Bs-CspB from Bacillus subtilis by 15.8 kJ mol(-1) in the Gibbs free energy of denaturation (DeltaG(D)). The two proteins vary in sequence at 12 positions but only two of them, Arg3 and Leu66 of Bc-Csp, which replace Glu3 and Glu66 of Bs-CspB, are responsible for the additional stability of Bc-Csp. These two positions are near the ends of the protein chain, but close to each other in the three-dimensional structure. The Glu3Arg exchange alone changed the stability by more than 11 kJ mol(-1). Here, we elucidated the molecular origins of the stability difference between the two proteins by a mutational analysis. Electrostatic contributions to stability were characterized by measuring the thermodynamic stabilities of many variants as a function of salt concentration. Double and triple mutant analyses indicate that the stabilization by the Glu3Arg exchange originates from three sources. Improved hydrophobic interactions of the aliphatic moiety of Arg3 contribute about 4 kJ mol(-1). Another 4 kJ mol(-1) is gained from the relief of a pairwise electrostatic repulsion between Glu3 and Glu66, as in the mesophilic protein, and 3 kJ mol(-1) originate from a general electrostatic stabilization by the positive charge of Arg3, which is not caused by a pairwise interaction. Mutations of all potential partners for an ion pair within a radius of 10 A around Arg3 had only marginal effects on stability. The Glu3-->Arg3 charge reversal thus optimizes ionic interactions at the protein surface by both local and global effects. However, it cannot convert the coulombic repulsion with another Glu residue into a corresponding attraction. Avoidance of unfavorable coulombic repulsions is probably a much simpler route to thermostability than the creation of stabilizing surface ion pairs, which can form only at the expense of conformational entropy.  相似文献   

17.
Neutral endopeptidase (EC 3.4.24.11, NEP) is a Zn-metallopeptidase involved in the degradation of biologically active peptides, notably the enkephalins and atrial natriuretic peptide. Recently, the structure of the active site of this enzyme has been probed by site-directed mutagenesis, and 4 amino acid residues have been identified, namely 2 histidines (His583 and His587), which act as zinc-binding ligands, a glutamate (Glu584) involved in catalysis, and an arginine residue (Arg102), suggested to participate in substrate binding. Site-directed mutagenesis has now been used to investigate the role of 4 other arginine residues (Arg408, Arg409, Arg659, and Arg747) that have been proposed as possible active site residues and to further analyze the role of Arg102. In each case, the arginine was replaced with a methionine, and both enzymatic activity and the IC50 values of several NEP inhibitors were measured for the mutated enzymes and compared to wild-type enzyme. The results suggest that 2 arginines, Arg102 and Arg747, could both be important for substrate and inhibitor binding. Arg747 seems to be positioned to interact with the carbonyl amide group of the P'1 residue and can be modified when the enzyme is treated with the arginine-specific reagents phenylglyoxal and butanedione. Arg102 could be positioned to interact with the free carboxyl group of a P'2 residue in some substrates and inhibitors and can be modified by phenylglyoxal but not by butanedione. The results could explain the dual dipeptidylcarboxypeptidase and endopeptidase nature of NEP.  相似文献   

18.
Amide H/2H exchange reveals a mechanism of thrombin activation   总被引:1,自引:0,他引:1  
Koeppe JR  Komives EA 《Biochemistry》2006,45(25):7724-7732
Thrombin is a dual action serine protease in the blood clotting cascade. Similar to other clotting factors, thrombin is mainly present in the blood in a zymogen form, prothrombin. Although the two cleavage events required to activate thrombin are well-known, little is known about why the thrombin precursors are inactive proteases. Although prothrombin is much larger than thrombin, prethrombin-2, which contains all of the same amino acids as thrombin, but has not yet been cleaved between Arg320 and Ile321, remains inactive. Crystal structures of both prethrombin-2 and thrombin are available and show almost no differences in the active site conformations. Slight differences were, however, seen in the loops surrounding the active site, which are larger in thrombin than in most other trypsin-like proteases, and have been shown to be important for substrate specificity. To explore whether the dynamics of the active site loops were different in the various zymogen forms of thrombin, we employed amide H/(2)H exchange experiments to compare the exchange rates of regions of thrombin with the same regions of prothrombin, prethrombin-2, and meizothrombin. Many of the surface loops showed less exchange in the zymogen forms, including the large loop corresponding to anion binding exosite 1. Conversely, the autolysis loop and sodium-binding site exchanged more readily in the zymogen forms. Prothrombin and prethrombin-2 gave nearly identical results while meizothrombin in some regions more closely resembled active thrombin. Thus, cleavage of the Arg320-Ile321 peptide bond is the key to formation of the active enzyme, which involves increased dynamics of the substrate-binding loops and decreased dynamics of the catalytic site.  相似文献   

19.
The structure of the type II DHQase from Streptomyces coelicolor has been solved and refined to high resolution in complexes with a number of ligands, including dehydroshikimate and a rationally designed transition state analogue, 2,3-anhydro-quinic acid. These structures define the active site of the enzyme and the role of key amino acid residues and provide snap shots of the catalytic cycle. The resolution of the flexible lid domain (residues 21-31) shows that the invariant residues Arg23 and Tyr28 close over the active site cleft. The tyrosine acts as the base in the initial proton abstraction, and evidence is provided that the reaction proceeds via an enol intermediate. The active site of the structure of DHQase in complex with the transition state analog also includes molecules of tartrate and glycerol, which provide a basis for further inhibitor design.  相似文献   

20.
The preferred pathway for prothrombin activation by prothrombinase involves initial cleavage at Arg(320) to produce meizothrombin, which is then cleaved at Arg(271) to liberate thrombin. Exosite binding drives substrate affinity and is independent of the bond being cleaved. The pathway for cleavage is determined by large differences in V(max) for cleavage at the two sites within intact prothrombin. By fluorescence binding studies in the absence of catalysis, we have assessed the ability of the individual cleavage sites to engage the active site of Xa within prothrombinase at equilibrium. Using a panel of recombinant cleavage site mutants, we show that in intact prothrombin, the Arg(320) site effectively engages the active site in a 1:1 interaction between substrate and enzyme. In contrast, the Arg(271) site binds to the active site poorly in an interaction that is approximately 600-fold weaker. Perceived substrate affinity is independent of active site engagement by either cleavage site. We further show that prior cleavage at the 320 site or the stabilization of the uncleaved zymogen in a proteinase-like state facilitates efficient docking of Arg(271) at the active site of prothrombinase. Therefore, we establish direct relationships between docking of either cleavage site at the active site of the catalyst, the V(max) for cleavage at that site, substrate conformation, and the resulting pathway for prothrombin cleavage. Exosite tethering of the substrate in either the zymogen or proteinase conformation dictates which cleavage site can engage the active site of the catalyst and enforces the sequential cleavage of prothrombin by prothrombinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号