首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.  相似文献   

2.
Infections frequently consist of more than one strain of a given pathogen. Experiments have shown that co-infecting strains often compete, so that the infection intensity of each strain in mixed infections is lower than in single strain infections. Such within-host competition can have important epidemiological and evolutionary consequences. However, the extent of competition has rarely been investigated in wild, naturally infected hosts, where there is noise in the form of varying inoculation doses, asynchronous infections and host heterogeneity, which can potentially alleviate or eliminate competition. Here, we investigated the extent of competition between Borrelia afzelii strains (as determined by ospC genotype) in three host species sampled in the wild. For this purpose, we developed a protocol for 454 amplicon sequencing of ospC, which allows both detection and quantification of each individual strain in an infection. Each host individual was infected with one to six ospC strains. The infection intensity of each strain was lower in mixed infections than in single ones, showing that there was competition. Rank-abundance plots revealed that there was typically one dominant strain, but that the evenness of the relative infection intensity of the different strains in an infection increased with the multiplicity of infection. We conclude that within-host competition can play an important role under natural conditions despite many potential sources of noise, and that quantification by next-generation amplicon sequencing offers new possibilities to dissect within-host interactions in naturally infected hosts.  相似文献   

3.
Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding.  相似文献   

4.
5.
Lyme disease is an infectious disease caused by a spirochete Borrelia burgdorferi ZS7. This spirochete is most often spread by ticks. Single antibiotic therapy is sufficient for containment of the early stage progression of the disease but combinational therapy is more preferred in later stages. Research is in progress for the development of drugs against the pathogen, but till date no vaccines have been developed to effect the late stage infections. There is a rapid rise in the cases of antibiotic-resistant population which is more than 10% of the total infected individuals. In such condition vaccine becomes the sole alternative for prevention. Therefore effective treatment includes antibiotic combination and combination of antigenic surfaces (for vaccine preparation). Thus, a comprehensive list of drug targets unique to the microorganisms is often necessary. Availability of Borrelia burgdorferi ZS7 proteome has enabled insilico analysis of protein sequences for the identification of drug targets and vaccine targets. In this study, 272 essential proteins were identified out of which 42 proteins were unique to the microorganism. The study identified 15 membrane localized drug targets. Amongst these 15, molecular modeling and structure validation of the five membrane localized drug target proteins could only be achieved because of the low sequence identity of the remaining proteins with RCSB structures. These 3D structures can be further characterized by invitro and invivo studies for the development of novel vaccine epitopes and novel antibiotic therapy against Borrelia burgdorferi.  相似文献   

6.
Colonial seabirds often breed in large aggregations. These individuals can be exposed to parasitism by the tick Ixodes uriae, but little is known about the circulation of pathogens carried by this ectoparasite, including Lyme disease Borrelia. Here we investigated the prevalence of antibodies (Ab) against Borrelia burgdorferi sensu lato in seabird species sampled at eight locations across the North Atlantic. Using enzyme-linked immunosorbent assay tests, we found that the prevalence of anti-Borrelia Ab in adult seabirds was 39.6% on average (over 444 individuals), but that it varied among colonies and species. Common guillemots showed higher seroprevalence (77.1%+/-5.9) than black-legged kittiwakes (18.6%+/-6.7) and Atlantic puffins (22.6%+/-6.3). Immunoblot-banding patterns of positive individuals, reflecting the variability of Borrelia antigens against which Ab were produced, also differed among locations and species, and did not tightly match the prevalence of Borrelia phylogroups previously identified in ticks collected from the same host individuals. These results represent the first report of the widespread prevalence of Ab against Borrelia within an assemblage of seabird species and demonstrate that Borrelia is an integrated aspect in the interaction between seabirds and ticks. More detailed studies on the dynamics of Borrelia within and among seabird species at different spatial scales will now be required to better understand the implications of this interaction for seabird ecology and the epidemiology of Lyme disease.  相似文献   

7.
Lyme disease is a tick-borne zoonotic infectious disease caused by Borrelia burgdorferi. The present study assessed the infection status of B. burgdorferi among horses reared in Korea using ELISA and PCR. Between 2009 and 2013, blood samples were collected from 727 horses throughout Korea. Data for each animal including age, gender, breed, and region of sample collection were used for epidemiological analysis. Overall, 38 (5.2%; true prevalence: 5.5%) of 727 horses were seropositive by ELISA. There were statistically significant differences according to breed and region (P<0.001) whose differences might be attributed to the ecology of vector ticks and climate conditions. Using 2 nested PCR, none of the samples tested positive for B. burgdorferi. Thus, a positive ELISA result can indicate only that the tested horse was previously exposed to B. burgdorferi, with no certainty over the time of exposure. Since global warming is likely to increase the abundance of ticks in Korea, continuous monitoring of tick-borne diseases in Korean horses is needed.  相似文献   

8.
9.
Ticks are found worldwide and afflict humans with many tick-borne illnesses. Ticks are vectors for pathogens that cause Lyme disease and tick-borne relapsing fever (Borrelia spp.), Rocky Mountain Spotted fever (Rickettsia rickettsii), ehrlichiosis (Ehrlichia chaffeensis and E. equi), anaplasmosis (Anaplasma phagocytophilum), encephalitis (tick-borne encephalitis virus), babesiosis (Babesia spp.), Colorado tick fever (Coltivirus), and tularemia (Francisella tularensis) 1-8. To be properly transmitted into the host these infectious agents differentially regulate gene expression, interact with tick proteins, and migrate through the tick 3,9-13. For example, the Lyme disease agent, Borrelia burgdorferi, adapts through differential gene expression to the feast and famine stages of the tick''s enzootic cycle 14,15. Furthermore, as an Ixodes tick consumes a bloodmeal Borrelia replicate and migrate from the midgut into the hemocoel, where they travel to the salivary glands and are transmitted into the host with the expelled saliva 9,16-19.As a tick feeds the host typically responds with a strong hemostatic and innate immune response 11,13,20-22. Despite these host responses, I. scapularis can feed for several days because tick saliva contains proteins that are immunomodulatory, lytic agents, anticoagulants, and fibrinolysins to aid the tick feeding 3,11,20,21,23. The immunomodulatory activities possessed by tick saliva or salivary gland extract (SGE) facilitate transmission, proliferation, and dissemination of numerous tick-borne pathogens 3,20,24-27. To further understand how tick-borne infectious agents cause disease it is essential to dissect actively feeding ticks and collect tick saliva. This video protocol demonstrates dissection techniques for the collection of hemolymph and the removal of salivary glands from actively feeding I. scapularis nymphs after 48 and 72 hours post mouse placement. We also demonstrate saliva collection from an adult female I. scapularis tick.  相似文献   

10.
Varroa destructor (Vd) is a honeybee ectoparasite. Its original host is the Asian honeybee, Apis cerana, but it has also become a severe, global threat to the European honeybee, Apis mellifera. Previous studies have shown that Varroa can mimic a host''s cuticular hydrocarbons (HC), enabling the parasite to escape the hygienic behaviour of the host honeybees. By transferring mites between the two honeybee species, we further demonstrate that Vd is able to mimic the cuticular HC of a novel host species when artificially transferred to this new host. Mites originally from A. cerana are more efficient than mites from A. mellifera in mimicking HC of both A. cerana and A. mellifera. This remarkable adaptability may explain their relatively recent host-shift from A. cerana to A. mellifera.  相似文献   

11.
A tick survey was conducted to determine the relative abundance and distribution of ticks associated with selected mammals in the Republic of Korea (ROK) during 2008-2009. A total of 918 ticks were collected from 76 mammals (6 families, 9 species) captured at 6 provinces and 3 Metropolitan Cities in ROK. Haemaphysalis longicornis (54.4%) was the most frequently collected tick, followed by Haemaphysalis flava (28.5%), Ixodes nipponensis (7.6%), Ixodes pomerantzevi (4.8%), Ixodes persulcatus (4.6%), and Haemaphysalis japonica (0.1%). Adults (57.0%) and nymphs (28.7%) of Ixodes and Haemaphysalis spp. were collected most frequently from medium or large mammals in this survey, while few larvae (14.3%) were collected. Hydropotes inermis was the most frequently captured mammal (52.6%), with a 16.4 tick index and 5 of 6 species of ticks collected during this survey. H. longicornis (69.7%) was the predominant tick collected from H. inermis, followed by H. flava (22.2%), I. persulcatus (6.1%), I. nipponensis (1.8%), and H. japonica (0.2%).  相似文献   

12.
Endemic, low-virulence parasitic infections are common in nature. Such infections may deplete host resources, which in turn could affect the reproduction of other parasites during co-infection. We aimed to determine whether the reproduction, and therefore transmission potential, of an epidemic parasite was limited by energy costs imposed on the host by an endemic infection. Total lipids, triacylglycerols (TAG) and polar lipids were measured in cockroaches (Blattella germanica) that were fed ad libitum, starved or infected with an endemic parasite, Gregarina blattarum. Reproductive output of an epidemic parasite, Steinernema carpocapsae, was then assessed by counting the number of infective stages emerging from these three host groups. We found both starvation and gregarine infection reduced cockroach lipids, mainly through depletion of TAG. Further, both starvation and G. blattarum infection resulted in reduced emergence of nematode transmission stages. This is, to our knowledge, the first study to demonstrate directly that host resource depletion caused by endemic infection could affect epidemic disease transmission. In view of the ubiquity of endemic infections in nature, future studies of epidemic transmission should take greater account of endemic co-infections.  相似文献   

13.
The manifestations of Lyme disease, caused by Ixodes spp. tick-transmitted Borrelia burgdorferi, range from skin infection to bloodstream invasion into the heart, joints and nervous system. The febrile infection human granulocytic anaplasmosis is caused by a neutrophilic rickettsia called Anaplasma phagocytophilum, also transmitted by Ixodes ticks. Previous studies suggest that co-infection with A. phagocytophilum contributes to increased spirochetal loads and severity of Lyme disease. However, a common link between these tick-transmitted pathogens is dissemination into blood or tissues through blood vessels. Preliminary studies show that B. burgdorferi binds and passes through endothelial barriers in part mediated by host matrix metalloproteases. Since neutrophils infected by A. phagocytophilum are activated to release bioactive metalloproteases and chemokines, we examined the enhanced B. burgdorferi transmigration through vascular barriers with co-infection in vitro. To test whether endothelial transmigration is enhanced with co-infection, B. burgdorferi and A. phagocytophilum-infected neutrophils were co-incubated with EA.hy926 cells (HUVEC-derived) and human brain microvascular endothelial cells in Transwell cultures. Transmigration of B. burgdorferi through endothelial cell barriers was determined and endothelial barrier integrity was measured by transendothelial electrical resistivity. More B. burgdorferi crossed both human BMEC and EA.hy926 cells in the presence of A. phagocytophilum-infected neutrophils than with uninfected neutrophils without affecting endothelial cell integrity. Such a mechanism may contribute to increased blood and tissue spirochete loads.  相似文献   

14.
Borrelia burgdorferi is the etiological agent for Lyme disease (LD), the most common vector borne disease in the United States. There is no human vaccine against LD currently available. Our approach to a vaccine is based on its surface-exposed glycolipids. One group of these glycolipids termed BBGL-2 consists of 1,2-di-O-acyl-3-O-(α-d-galactopyranosyl)-sn-glycerol congeners having palmitic, oleic, stearic, linoleic, and myristic acids. In order to delineate the immunodominant region(s) of the BBGL-2 components, we embarked on a synthetic project to provide available structurally defined, homogeneous analogs of BBGL-2 that might help identify the best vaccine candidate. The antigenicity of the synthetic glycolipids was examined by dot-blot analysis using mice sera obtained by immunization with killed B. burgdorferi cells, with native BBGL-2 in complete Freund’s adjuvant, as well as sera obtained from patients with Lyme disease. We found that the presence of two acyl groups in the glycerol moiety was essential for antigenicity. At least one of these groups must be an oleoyl moiety. Neither the anomeric configuration of the galactose nor the configuration of the glycerol at C-2 was a decisive factor. Based on these findings we designed an ‘unnatural’ BBGL-2 analog having the structure 3-O-(β-d-galactopyranosyl)-1,2-di-O-oleoyl-dl-glycerol which is easier and less expensive to synthesize than the other BBGL-2 congeners prepared in this study. This substance proved to be antigenic and is considered a candidate vaccine for Lyme disease.  相似文献   

15.
Chromosomal inversions impact genetic variation and facilitate speciation in part by reducing recombination in heterokaryotypes. We generated multiple whole-genome shotgun sequences of the parapatric species pair Drosophila pseudoobscura and Drosophila persimilis and their sympatric outgroup (Drosophila miranda) and compared the average pairwise differences for neutral sites within, just outside and far outside of the three large inversions. Divergence between D. pseudoobscura and D. persimilis is high inside the inversions and in the suppressed recombination regions extending 2.5 Mb outside of inversions, but significantly lower in collinear regions further from the inversions. We observe little evidence of decreased divergence predicted to exist in the centre of inversions, suggesting that gene flow through double crossovers or gene conversion is limited within the inversion, or selection is acting within the inversion to maintain divergence in the face of gene flow. In combination with past studies, we provide evidence that inversions in this system maintain areas of high divergence in the face of hybridization, and have done so for a substantial period of time. The left arm of the X chromosome and chromosome 2 inversions appear to have arisen in the lineage leading to D. persimilis approximately 2 Ma, near the time of the split of D. persimilis-D. pseudoobscura-D. miranda, but likely fixed within D. persimilis much more recently, as diversity within D. persimilis is substantially reduced inside and near these two inversions. We also hypothesize that the inversions in D. persimilis may provide an empirical example of the 'mixed geographical mode' theory of inversion origin and fixation, whereby allopatry and secondary contact both play a role.  相似文献   

16.
17.

Background and Aims

The bacterium Xylella fastidiosa (Xf), responsible for Pierce''s disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf.

Methods

Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant.

Key Results

There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant ‘Sylvaner’ had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement.

Conclusions

Stem–leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.  相似文献   

18.
Serosurveillance for zoonotic diseases in small mammals and detection of chiggers, the vector of Orientia tsutsugamushi, were conducted from September 2014 to August 2015 in Gwangju Metropolitan Area. Apodemus agrarius was the most commonly collected small mammals (158; 91.8%), followed by Myodes regulus (8; 4.6%), and Crocidura lasiura (6; 3.5%). The highest seroprevalence of small mammals for O. tsutsugamushi (41; 26.3%) was followed by hantaviruses (24; 15.4%), Rickettsia spp. (22; 14.1%), and Leptospira (2; 1.3%). A total of 3,194 chiggers were collected from small mammals, and 1,236 of 3,194 chiggers were identified with 7 species of 3 genera: Leptotrombidium scutellare was the most commonly collected species (585; 47.3%), followed by L. orientale (422; 34.1%), Euchoengastia koreaensis (99; 8.0%), L. palpale (58; 4.7%), L. pallidum (36; 2.9%), Neotrombicula gardellai (28; 2.3%), and L. zetum (8; 0.6%). L. scutellare was the predominant species. Three of 1,236 chigger mites were positive for O. tsutsugamushi by PCR. As a result of phylogenetic analysis, the O. tsutsugamushi strain of chigger mites had sequence homology of 90.1-98.2% with Boryong. This study provides baseline data on the distribution of zoonotic diseases and potential vectors for the development of prevention strategies of vector borne diseases in Gwangju metropolitan area.  相似文献   

19.
Faeces-mediated transmission of Trypanosoma cruzi (the aetiological agent of Chagas disease) by triatomine insects is extremely inefficient. Still, the parasite emerges frequently, and has infected millions of people and domestic animals. We synthesize here the results of field and laboratory studies of T. cruzi transmission conducted in and around Arequipa, Peru. We document the repeated occurrence of large colonies of triatomine bugs (more than 1000) with very high infection prevalence (more than 85%). By inoculating guinea pigs, an important reservoir of T. cruzi in Peru, and feeding triatomine bugs on them weekly, we demonstrate that, while most animals quickly control parasitaemia, a subset of animals remains highly infectious to vectors for many months. However, we argue that the presence of these persistently infectious hosts is insufficient to explain the observed prevalence of T. cruzi in vector colonies. We posit that seasonal rains, leading to a fluctuation in the price of guinea pig food (alfalfa), leading to annual guinea pig roasts, leading to a concentration of vectors on a small subpopulation of animals maintained for reproduction, can propel T. cruzi through vector colonies and create a considerable force of infection for a pathogen whose transmission might otherwise fizzle out.  相似文献   

20.
A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were therefore important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号