首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We fit a mathematical model to data characterizing the primary cellular immune response to lymphocytic choriomeningitis virus. The data enumerate the specific CD8(+) T cell response to six MHC class I-restricted epitopes and the specific CD4(+) T cell responses to two MHC class II-restricted epitopes. The peak of the response occurs around day 8 for CD8(+) T cells and around day 9 for CD4(+) T cells. By fitting a model to the data, we characterize the kinetic differences between CD4(+) and CD8(+) T cell responses and among the immunodominant and subdominant responses to the various epitopes. CD8(+) T cell responses have faster kinetics in almost every aspect of the response. For CD8(+) and CD4(+) T cells, the doubling time during the initial expansion phase is 8 and 11 h, respectively. The half-life during the contraction phase following the peak of the response is 41 h and 3 days, respectively. CD4(+) responses are even slower because their contraction phase appears to be biphasic, approaching a 35-day half-life 8 days after the peak of the response. The half-life during the memory phase is 500 days for the CD4(+) T cell responses and appears to be lifelong for the six CD8(+) T cell responses. Comparing the responses between the various epitopes, we find that immunodominant responses have an earlier and/or larger recruitment of precursors cells before the expansion phase and/or have a faster proliferation rate during the expansion phase.  相似文献   

2.
The emergence of the novel reassortant A(H1N1)-2009 influenza virus highlighted the threat to the global population posed by an influenza pandemic. Pre-existing CD8(+) T-cell immunity targeting conserved epitopes provides immune protection against newly emerging strains of influenza virus, when minimal antibody immunity exists. However, the occurrence of mutations within T-cell antigenic peptides that enable the virus to evade T-cell recognition constitutes a substantial issue for virus control and vaccine design. Recent evidence suggests that it might be feasible to elicit CD8(+) T-cell memory pools to common virus mutants by pre-emptive vaccination. However, there is a need for a greater understanding of CD8(+) T-cell immunity towards commonly emerging mutants. The present analysis focuses on novel and immunodominant, although of low pMHC-I avidity, CD8(+) T-cell responses directed at the mutant influenza D(b)NP(366) epitope, D(b)NPM6A, following different routes of infection. We used a C57BL/6J model of influenza to dissect the effectiveness of the natural intranasal (i.n.) versus intraperitoneal (i.p.) priming for generating functional CD8(+) T cells towards the D(b)NPM6A epitope. In contrast to comparable CD8(+) T-cell responses directed at the wild-type epitopes, D(b)NP(366) and D(b)PA(224), we found that the priming route greatly affected the numbers, cytokine profiles and TCR repertoire of the responding CD8(+) T cells directed at the D(b)NPM6A viral mutant. As the magnitude, polyfunctionality, and T-cell repertoire diversity are potential determinants of the protective efficacy of CD8(+) T-cell responses, our data have implications for the development of vaccines to combat virus mutants.  相似文献   

3.
Our previous studies have shown that targeting DNA vaccine-encoded major histocompatibility complex class I epitopes to the proteasome enhanced CD8(+) T-cell induction and protection against lymphocytic choriomeningitis virus (LCMV) challenge. Here, we expand these studies to evaluate CD4(+) T-cell responses induced by DNA immunization and describe a system for targeting proteins and minigenes to lysosomes. Full-length proteins can be targeted to the lysosomal compartment by covalent attachment to the 20-amino-acid C-terminal tail of lysosomal integral membrane protein-II (LIMP-II). Using minigenes encoding defined T-helper epitopes from lymphocytic choriomeningitis virus, we show that the CD4(+) T-cell response induced by the NP(309-328) epitope of LCMV was greatly enhanced by addition of the LIMP-II tail. However, the immunological consequence of lysosomal targeting is not invariably positive; the CD4(+) T-cell response induced by the GP(61-80) epitope was almost abolished when attached to the LIMP-II tail. We identify the mechanism which underlies this marked difference in outcome. The GP(61-80) epitope is highly susceptible to cleavage by cathepsin D, an aspartic endopeptidase found almost exclusively in lysosomes. We show, using mass spectrometry, that the GP(61-80) peptide is cleaved between residues F(74) and K(75) and that this destroys its ability to stimulate virus-specific CD4(+) T cells. Thus, the immunological result of lysosomal targeting varies, depending upon the primary sequence of the encoded antigen. We analyze the effects of CD4(+) T-cell priming on the virus-specific antibody and CD8(+) T-cell responses which are mounted after virus infection and show that neither response appears to be accelerated or enhanced. Finally, we evaluate the protective benefits of CD4(+) T-cell vaccination in the LCMV model system; in contrast to DNA vaccine-induced CD8(+) T cells, which can confer solid protection against LCMV challenge, DNA vaccine-mediated priming of CD4(+) T cells does not appear to enhance the vaccinee's ability to combat viral challenge.  相似文献   

4.
The recall of CD8(+) T-cell memory established by infecting H-2(b) mice with an H1N1 influenza A virus provided a measure of protection against an extremely virulent H7N7 virus. The numbers of CD8(+) effector and memory T cells specific for the shared, immunodominant D(b)NP(366) epitope were greatly increased subsequent to the H7N7 challenge, and though lung titers remained as high as those in naive controls for 5 days or more, the virus was cleared more rapidly. Expanding the CD8(+) memory T-cell pool (<0.5 to >10%) by sequential priming with two different influenza A viruses (H3N2-->H1N1) gave much better protection. Though the H7N7 virus initially grew to equivalent titers in the lungs of naive and double-primed mice, the replicative phase was substantially controlled within 3 days. This tertiary H7N7 challenge caused little increase in the magnitude of the CD8(+) D(b)NP(366)(+) T-cell pool, and only a portion of the memory population in the lymphoid tissue could be shown to proliferate. The great majority of the CD8(+) D(b)NP(366)(+) set that localized to the infected respiratory tract had, however, cycled at least once, though recent cell division was shown not to be a prerequisite for T-cell extravasation. The selective induction of CD8(+) T-cell memory can thus greatly limit the damage caused by a virulent influenza A virus, with the extent of protection being directly related to the number of available responders. Furthermore, a large pool of CD8(+) memory T cells may be only partially utilized to deal with a potentially lethal influenza infection.  相似文献   

5.
Following acute lymphocytic choriomeningitis virus (LCMV) infection, there is a potent antiviral CD8 T-cell response that eliminates the infection. This initial CD8 T-cell response is followed by a period of memory during which elevated numbers of virus-specific CD8 T cells remain in the mouse. CD4 T cells are also activated after LCMV infection, but relatively less is known about the magnitude and duration of the CD4 response. In this study, we used intracellular staining for interferon-gamma to measure both CD4 and CD8 responses in the same mice at the single cell level. After LCMV infection, there was an increase in the number of activated CD4 T cells and an associated increase in the number of virus-specific CD4 T cells. At the peak of this expansion phase, the frequency of virus-specific CD4 T cells was 1 in 20 (0.5-1.0 x 10(6) per spleen). Like the CD8 response, long-term CD4 memory could be found up to a year after the infection with frequencies of approximately 1 in 260 (0.5-1.5 x 10(5) per spleen). However, the magnitude of virus-specific CD8 T cells was greater than virus-specific CD4 T cells during all phases of the immune response (expansion, death, and memory). At day 8, there were 20- to 35-fold more virus-specific CD8 T cells than CD4 T cells. This initial difference in cell number lasted into the memory phase as there remained a ten- to 20-fold difference in the CD8 and CD4 responses. These results highlight the importance of the expansion phase in determining the size of the memory T-cell pool. In addition to the difference in the magnitude, the activation requirements of CD8 and CD4 T-cell responses were different: CD8 T responses were not affected by blockade of CD40-CD40 ligand interaction whereas CD4 responses were reduced 90%. So while there is long-term memory in both the CD8 and CD4 compartments, the rules regulating the activation of CD8 and CD4 T cells and the overall magnitude of the responses are different.  相似文献   

6.
Apoptosis is critical for the development and maintenance of the immune system. The proapoptotic Bcl-2 family member Bim is important for normal immune system homeostasis. Although previous experiments have shown that Bim is critical for the apoptosis of antigen-specific CD8(+) T cells during acute viral infection, the role of Bim during chronic viral infection is unclear. Using lymphocytic choriomeningitis virus clone 13 infection of mice, we demonstrate a role for Bim in CD8(+) T-cell apoptosis during chronic viral infection. Enumeration of antigen-specific CD8(+) T cells by major histocompatibility complex class I tetramer staining revealed that CD8(+) D(b)NP396-404(+) T cells, which undergo extensive deletion in wild-type mice, exhibited almost no decrease in Bim mutant mice. This contrasts with CD8(+) D(b)GP33-41(+) and CD8(+) D(b)GP276-286(+) T cells that underwent similar decreases in numbers in both Bim mutant and wild-type mice. Increased numbers of CD8(+) D(b)NP396-404(+) T cells in Bim mutant mice were due to lack of apoptosis and could not be explained by altered proliferation, differential homing to tissues, or increased help from CD4(+) T cells. When viral titers were examined, high levels were initially observed in both groups, but in Bim mutant mice, clearance from the spleen and sera was slightly accelerated. These experiments demonstrate the critical role of Bim during chronic viral infection to down-regulate CD8(+) T-cell responses and have implications for designing strategies for optimizing immunotherapies during situations where antigen persists, such as chronic infection, autoimmune syndromes, and cancer.  相似文献   

7.
Affordable therapeutic strategies that induce sustained control of human immunodeficiency virus type 1 (HIV-1) replication and are tailored to the developing world are urgently needed. Since CD8(+) and CD4(+) T cells are crucial to HIV-1 control, stimulation of potent cellular responses by therapeutic vaccination might be exploited to reduce antiretroviral drug exposure. However, therapeutic vaccines tested to date have shown modest immunogenicity. In this study, we performed a comprehensive analysis of the changes in virus-specific CD8(+) and CD4(+) T-cell responses occurring after vaccination of 16 HIV-1-infected individuals with a recombinant modified vaccinia virus Ankara-vectored vaccine expressing the consensus HIV-1 clade A Gag p24/p17 sequences and multiple CD8(+) T-cell epitopes during highly active antiretroviral therapy. We observed significant amplification and broadening of CD8(+) and CD4(+) gamma interferon responses to vaccine-derived epitopes in the vaccinees, without rebound viremia, but not in two unvaccinated controls followed simultaneously. Vaccine-driven CD8(+) T-cell expansions were also detected by tetramer reactivity, predominantly in the CD45RA(-) CCR7(+) or CD45RA(-) CCR7(-) compartments, and persisted for at least 1 year. Expansion was associated with a marked but transient up-regulation of CD38 and perforin within days of vaccination. Gag-specific CD8(+) and CD4(+) T-cell proliferation also increased postvaccination. These data suggest that immunization with MVA.HIVA is a feasible strategy to enhance potentially protective T-cell responses in individuals with chronic HIV-1 infection.  相似文献   

8.
Recombinant vaccinia viruses (rVV) have been extensively used as vaccines, but there is little information about the total magnitude of the VV-specific T-cell response and how this compares to the immune response to the foreign gene(s) expressed by the rVV. To address this issue, we quantitated the T-cell responses to both the viral vector and the insert following the infection of mice with VV expressing a cytotoxic T lymphocyte (CTL) epitope (NP118-126) from lymphocytic choriomeningitis virus (LCMV). The LCMV epitope-specific response was quantitated by intracellular cytokine staining after stimulation with the specific peptide. To analyze the total VV-specific response, we developed a simple intracellular cytokine staining assay using VV-infected major histocompatibility complex class I and II matched cells as stimulators. Using this approach, we made the following determinations. (i) VV-NP118 induced potent and long-lasting CD8 and CD4 T-cell responses to the vector; at the peak of the response (approximately 1 week), there were approximately 10(7) VV-specific CD8 T cells (25% of the CD8 T cells) and approximately 10(6) VV-specific CD4 T cells (approximately 5% of the CD4 T cells) in the spleen. These numbers decreased to approximately 5 x 10(5) CD8 T cells (approximately 5% frequency) and approximately 10(5) CD4 T cells (approximately 0.5% frequency), respectively, by day 30 and were then stably maintained at these levels for >300 days. The size of this VV-specific T-cell response was comparable to that of the T-cell response induced following an acute LCMV infection. (ii) VV-specific CD8 and CD4 T cells were capable of producing gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and interleukin-2; all cells were able to make IFN-gamma, a subset produced both IFN-gamma and TNF-alpha, and another subset produced all three cytokines. (iii) The CD8 T-cell response to the foreign gene (LCMV NP118-126 epitope) was coordinately regulated with the response to the vector during all three phases (expansion, contraction, and memory) of the T-cell response. The total number of CD8 T cells responding to NP118-126 were approximately 20- to 30-fold lower than the number responding to the VV vector (approximately 1% at the peak and 0.2% in memory). This study provides a better understanding of T-cell immunity induced by VV-based vaccines, and in addition, the technique described in the study can be readily extended to other viral vectors to determine the ratio of the T-cell response to the insert versus the vector. This information will be useful in optimizing prime-boost regimens for vaccination.  相似文献   

9.
Certain major histocompatibility complex (MHC) class I alleles are strongly associated with control of human immunodeficiency virus and simian immunodeficiency virus (SIV). CD8(+) T cells specific for epitopes restricted by these molecules may be particularly effective. Understanding how CD8(+) T cells contribute to control of viral replication should yield important insights for vaccine design. We have recently identified an Indian rhesus macaque MHC class I allele, Mamu-B*08, associated with elite control and low plasma viremia after infection with the pathogenic isolate SIVmac239. Here, we infected four Mamu-B*08-positive macaques with SIVmac239 to investigate why some of these macaques control viral replication. Three of the four macaques controlled SIVmac239 replication with plasma virus concentrations below 20,000 viral RNA copies/ml at 20 weeks postinfection; two of four macaques were elite controllers (ECs). Interestingly, two of the four macaques preserved their CD4(+) memory T lymphocytes during peak viremia, and all four recovered their CD4(+) memory T lymphocytes in the chronic phase of infection. Mamu-B*08-restricted CD8(+) T-cell responses dominated the acute phase and accounted for 23.3% to 59.6% of the total SIV-specific immune responses. Additionally, the ECs mounted strong and broad CD8(+) T-cell responses against several epitopes in Vif and Nef. Mamu-B*08-specific CD8(+) T cells accounted for the majority of mutations in the virus at 18 weeks postinfection. Interestingly, patterns of viral variation in Nef differed between the ECs and the other two macaques. Natural containment of AIDS virus replication in Mamu-B*08-positive macaques may, therefore, be related to a combination of immunodominance and viral escape from CD8(+) T-cell responses.  相似文献   

10.
Virus-associated malignancies are potential targets for immunotherapeutic vaccines aiming to stimulate T-cell responses against viral antigens expressed in tumor cells. Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma, a high-incidence tumor in southern China, expresses a limited set of EBV proteins, including the nuclear antigen EBNA1, an abundant source of HLA class II-restricted CD4(+) T-cell epitopes, and the latent membrane protein LMP2, a source of subdominant CD8(+) T-cell epitopes presented by HLA class I alleles common in the Chinese population. We used appropriately modified gene sequences from a Chinese EBV strain to generate a modified vaccinia virus Ankara recombinant, MVA-EL, expressing the CD4 epitope-rich C-terminal domain of EBNA1 fused to full-length LMP2. The endogenously expressed fusion protein EL is efficiently processed via the HLA class I pathway, and MVA-EL-infected dendritic cells selectively reactivate LMP2-specific CD8(+) memory T-cell responses from immune donors in vitro. Surprisingly, endogenously expressed EL also directly accesses the HLA class II presentation pathway and, unlike endogenously expressed EBNA1 itself, efficiently reactivates CD4(+) memory T-cell responses in vitro. This unscheduled access to the HLA class II pathway is coincident with EL-mediated redirection of the EBNA1 domain from its native nuclear location to dense cytoplasmic patches. Given its immunogenicity to both CD4(+) and CD8(+) T cells, MVA-EL has potential as a therapeutic vaccine in the context of nasopharyngeal carcinoma.  相似文献   

11.
Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used H-2K(b) restricted T-cell epitopes of NP. The NP-specific CD8(+) T cell response was analyzed using a (51)Cr-release assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific CD8(+) T cell response at eight days after infection. We also found that several different methods to check the NP-specific CD8(+) T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited 2 approximately 4 weeks after immunization and maximized at 6 approximately 8 weeks. NP-specific CD8(+) T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice.  相似文献   

12.
Viral persistence following infection with invasive strains of lymphocytic choriomeningitis virus (LCMV) can be achieved by selective down-regulation of virus-specific T lymphocytes. High viral burden in the onset of infection drives responding cells into functional unresponsiveness (anergy) that can be followed by their physical elimination. In this report, we studied down-regulation of the virus-specific CD8(+)-T-cell response during persistent infection of adult mice with LCMV, with emphasis on the role of perforin-, Fas/FasL-, or tumor necrosis factor receptor 1 (TNFR1)-mediated cytolysis in regulating T-cell homeostasis. The results reveal that the absence of perforin, Fas-ligand, or TNFR1 has no significant effect on the kinetics of proliferation and functional inactivation of virus-specific CD8(+) T cells in the onset of chronic LCMV infection. However, these molecules play a critical role in the homeostatic regulation of T cells, influencing the longevity of the virus-specific CD8(+)-T-cell population once it has become anergic. Thus, CD8(+) T cells specific to the dominant LCMV NP(396-404) epitope persist in an anergic state for at least 70 days in perforin-, FasL-, or TNFR1-deficient mice, but they were eliminated by day 30 in C57BL/6 controls. These effects were additive as shown by a deficit of apoptotic death of NP(396-404) peptide-specific CD8(+) T cells in mice lacking both perforin and TNFR1. This suggests a role for perforin-, FasL-, and TNFR1-mediated pathways in down-regulation of the antiviral T cell response during persistent viral infection by determining the fate of antigen-specific T cells. Moreover, virus-specific anergic CD8(+) T cells in persistently infected C57BL/6 mice contain higher levels of Bcl-2 and Bcl-XL than functionally intact T cells generated during acute LCMV infection. In the case of proapoptotic factors, Bax expression did not differ between T-cell populations and Bad was below the limit of detection in all samples. As expression of the Bcl-2 family members controls susceptibility to apoptosis, this finding may provide a molecular basis for the survival of anergic cells under conditions of prolonged antigen stimulation.  相似文献   

13.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

14.
We measured the longitudinal responses to 95 HLA class I-restricted human immunodeficiency virus (HIV) epitopes and an immunodominant HLA A2-restricted cytomegalovirus (CMV) epitope in eight treatment-naive HIV-infected individuals, using intracellular cytokine staining. Patients were treated with highly active antiretroviral therapy (HAART) for a median of 78 weeks (range, 34 to 121 weeks). Seven of eight patients maintained an undetectable viral load for the duration of therapy. A rapid decline in HIV-specific CD8(+) T-cell response was observed at initiation of therapy. After an undetectable viral load was achieved, a slower decrease in HIV-specific CD8(+) T-cell response was observed that was well described by first-order kinetics. The median half-life for the rate of decay was 38.8 (20.3 to 68.0) weeks when data were expressed as percentage of peripheral CD8(+) T cells. In most cases, data were similar when expressed as the number of responding CD8(+) T cells per microliter of blood. In subjects who responded to more than one HIV epitope, rates of decline in response to the different epitopes were similar and varied by a factor of 2.2 or less. Discontinuation of treatment resulted in a rapid increase in HIV-specific CD8(+) T cells. Responses to CMV increased 1.6- and 2.8-fold within 16 weeks of initiation of HAART in two of three patients with a measurable CMV response. These data suggest that HAART quickly starts to restore CD8(+) T-cell responses to other chronic viral infections and leads to a slow decrease in HIV-specific CD8(+) T-cell response in HIV-infected patients. The slow decrease in the rate of CD8(+) T-cell response and rapid increase in response to recurrent viral replication suggest that the decrease in CD8(+) T-cell response observed represents a normal memory response to withdrawal of antigen.  相似文献   

15.
Ganusov VV  De Boer RJ 《Journal of virology》2008,82(23):11749-11757
Despite recent advances in immunology, several key parameters determining virus dynamics in infected hosts remain largely unknown. For example, the rate at which specific effector and memory CD8 T cells clear virus-infected cells in vivo is hardly known for any viral infection. We propose a framework to quantify T-cell-mediated killing of infected or peptide-pulsed target cells using the widely used in vivo cytotoxicity assay. We have reanalyzed recently published data on killing of peptide-pulsed splenocytes by cytotoxic T lymphocytes and memory CD8 T cells specific to NP396 and GP276 epitopes of lymphocytic choriomeningitis virus (LCMV) in the mouse spleen. Because there are so many effector CD8 T cells in spleens of mice at the peak of the immune response, NP396- and GP276-pulsed targets are estimated to have very short half-lives of 2 and 14 min, respectively. After the effector numbers have diminished, i.e., in LCMV-immune mice, the half-lives become 48 min and 2.8 h for NP396- and GP276-expressing targets, respectively. Analysis of several alternative models demonstrates that the estimates of half-life times of peptide-pulsed targets are not affected when changes are made in the model assumptions. Our report provides a unifying framework to compare killing efficacies of CD8 T-cell responses specific to different viral and bacterial infections in vivo, which may be used to compare efficacies of various cytotoxic-T-lymphocyte-based vaccines.  相似文献   

16.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

17.
Cytotoxic T-lymphocyte (CTL) responses are thought to control human immunodeficiency virus replication during the acute phase of infection. Understanding the CD8(+) T-cell immune responses early after infection may, therefore, be important to vaccine design. Analyzing these responses in humans is difficult since few patients are diagnosed during early infection. Additionally, patients are infected by a variety of viral subtypes, making it hard to design reagents to measure their acute-phase immune responses. Given the complexities in evaluating acute-phase CD8(+) responses in humans, we analyzed these important immune responses in rhesus macaques expressing a common rhesus macaque major histocompatibility complex class I molecule (Mamu-A*01) for which we had developed a variety of immunological assays. We infected eight Mamu-A*01-positive macaques and five Mamu-A*01-negative macaques with the molecularly cloned virus SIV(mac)239 and determined all of the simian immunodeficiency virus-specific CD8(+) T-cell responses against overlapping peptides spanning the entire virus. We also monitored the evolution of particular CD8(+) T-cell responses by tetramer staining of peripheral lymphocytes as well as lymph node cells in situ. In this first analysis of the entire CD8(+) immune response to autologous virus we show that between 2 and 12 responses are detected during the acute phase in each animal. CTL against the early proteins (Tat, Rev, and Nef) and against regulatory proteins Vif and Vpr dominated the acute phase. Interestingly, CD8(+) responses against Mamu-A*01-restricted epitopes Tat(28-35)SL8 and Gag(181-189)CM9 were immunodominant in the acute phase. After the acute phase, however, this pattern of reactivity changed, and the Mamu-A*01-restricted response against the Gag(181-189)CM9 epitope became dominant. In most of the Mamu-A*01-positive macaques tested, CTL responses against epitopes bound by Mamu-A*01 dominated the CD8(+) cellular immune response.  相似文献   

18.
Activation of CD4+ T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4+ T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2d. This is quite disparate to the H-2b setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2d or whether additional CD4+ T-cell epitopes could be identified in the setting of the H-2b background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4+ T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4+ epitopes, four of them also stimulate CD8+ T cells in a statistically significant manner. Furthermore, we assessed these CD4+ T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4+ and CD8+ T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.  相似文献   

19.
During many viral infections, antigen-specific CD8(+) T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8(+) T cells undergo apoptosis. Previous studies have implicated reactive oxygen intermediates (ROI) in lymphocyte apoptosis. The purpose of the experiments presented here was to determine the role of ROI in the expansion and contraction of CD8(+) T cells in vivo during a physiological response such as viral infection. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a metalloporphyrin-mimetic compound with superoxide dismutase activity, from days 0 to 8 postinfection. At the peak of CD8(+)-T-cell response, on day 8 postinfection, the numbers of antigen-specific cells were 10-fold lower in MnTBAP-treated mice than in control mice. From days 8 to 30, a contraction phase ensued where the numbers of antigen-specific CD8(+) T cells declined 25-fold in vehicle-treated mice compared to a 3.5-fold decrease in MnTBAP-treated mice. Differences in contraction appeared to be due to greater proliferation in drug-treated mice. By day 38, the numbers of antigen-specific CD8(+) memory T cells were equivalent for the two groups. The administration of MnTBAP during secondary viral infection had no effect on the expansion of antigen-specific CD8(+) secondary effector T cells. These data suggest that ROI production is critical for the massive expansion and contraction of antigen-specific CD8(+) T cells during primary, but not secondary, viral infection.  相似文献   

20.
T cells must play the major role in controlling acute human Lassa virus infection, because patients recover from acute Lassa fever in the absence of a measurable neutralizing antibody response. T cells alone seem to protect animals from a lethal Lassa virus challenge, because after experimental vaccination no neutralizing antibodies are detectable. In order to study human T-cell reactivity to single Lassa virus proteins, the nucleoprotein (NP) of Lassa virus, strain Josiah, was cloned, expressed in Escherichia coli, and affinity purified. Peripheral blood mononuclear cells (PBMC) obtained from 8 of 13 healthy, Lassa virus antibody-positive individuals living in the Republic of Guinea, western Africa, were found to proliferate in response to the recombinant protein (proliferation index >/=10). PBMC obtained from one individual with a particularly high proliferative response were used to generate 50 NP-specific T-cell clones (TCC). For six of these the epitopes were mapped with overlapping synthetic peptides derived from the sequence of the NP. These CD4(+) TCC displayed high specific proliferation and produced mainly gamma interferon upon stimulation with NP. Because variation of up to 15% in the amino acid sequences of the structural proteins of naturally occurring Lassa virus variants has been observed, the reactivity of the TCC with peptides derived from the homologous epitopes of the Nigeria strain of Lassa virus and of the eastern Africa arenavirus Mopeia was tested. With the Nigeria strain of Lassa virus the levels of homology were 100% for two of these epitopes and 85% for three of them, whereas homology with the respective Mopeia epitopes ranged from 92 to 69%. Reactivity of the TCC with peptides derived from the variable epitopes of the Nigeria strain and of Mopeia was reduced or completely abolished. This report shows for the first time that seropositive individuals from areas of endemicity have very strong memory CD4(+) T-cell responses against the NP of Lassa virus, which are partly strain specific and partly cross-reactive with other Lassa virus strains. Our findings may have important implications for the strategy of designing recombinant vaccines against this mainly T-cell-controlled human arenavirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号