首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Migratory species take advantage of multiple habitats during their life cycle to optimize growth, survival, and reproduction. However, migration also makes them vulnerable to habitat degradation and exploitation in each habitat, and loss of connection between habitats. Partially migratory species (i.e., migration is facultative rather than obligate) can persist after loss of connectivity and may then resume migration after the habitats are reconnected. We analyzed stable isotopes of carbon and nitrogen to investigate the possible use of marine habitats for foraging by bull trout, Salvelinus confluentus, in years immediately after removal of impassable hydroelectric dams on the Elwha River, Washington State, USA. Juveniles in the Elwha River estuary were similar in δ15N and δ13C values to those in the estuary of the free-flowing Dungeness River nearby, and the values of fish from the estuaries were higher than those of juveniles collected in the river, consistent with use of marine food sources. Adult bull trout collected in each of the rivers had values indicating extensive reliance on marine prey - similar to those of adult Pacific salmon that had spent several years at sea. Taken together, these data demonstrate that the Elwha River bull trout, almost entirely landlocked for a century, are rapidly resuming anadromy and that the marine prey contribute substantially to their trophic ecology and likely their growth. More broadly, the results reveal the importance of connectivity for migratory fishes, their ability to resume anadromy once the connection between habitats is restored, and the population resilience that partial migration provides for them.  相似文献   

2.
The estuary of the Elwha River, on Washington’s Olympic Peninsula, has been degraded and simplified over the past century from sediment retention behind two large dams, levee construction, and channelization. With the removal of Elwha Dam and initiation of Glines Canyon Dam’s removal in fall 2011, sediment deposits will change the estuary and affect anadromous and nearshore marine fishes. Juvenile Chinook salmon commonly use estuaries and the river’s population is part of an Evolutionarily Significant Unit listed as Threatened under the U.S. Endangered Species Act. This study reports on monthly sampling in part of the river’s estuary from March 2007 through September 2011 to characterize the seasonal changes in relative abundance of yearlings and sub-yearlings, and size distributions prior to dam removal. Most (69 %) of the yearlings were caught in April, when this life history type was released from the hatchery, and to a lesser extent in May (28 %) and June (3 %). Yearlings caught in the estuary were smaller than those released from the hatchery (means: 153 mm?±?28 SD vs. 175 mm?±?5 SD), suggesting more rapid departure by larger fish. Sub-yearlings were much more abundant in the estuary, and were caught from March through November, increasing in mean fork length by 8.7 mm month-1. The hatchery-origin sub-yearlings were not marked externally and so were not distinguishable from natural origin fish. However, 39 % of the sub-yearlings were caught prior to June, when sub-yearlings were released from the hatchery, indicating substantial use of the estuary by natural-origin fish. Thus, even in a reduced state after a century of dam operation, the highly modified estuary was used over many months by juvenile Chinook salmon. The information on juvenile Chinook salmon prior to dam removal provides a basis for comparison to patterns in the future, when the anticipated increase in estuarine complexity may further enhance habitat use by juvenile Chinook salmon.  相似文献   

3.
All anadromous fishes, including juvenile salmon, encounter estuarine habitats as they transition from riverine to marine environments. We compare the estuarine use between juvenile Atlantic salmon (Salmo salar) in the Penobscot River estuary and Pacific salmon (Oncorhynchus spp.) in the Columbia River estuary. Both estuaries have been degraded by anthropogenic activities. Atlantic and Pacific salmon populations in both basins rely heavily on hatchery inputs for persistence. Pacific salmon, as a group, represent a continuum of estuarine use, from species that move through rapidly to those that make extensive use of estuarine habitats. While Atlantic salmon estuarine use is predominantly similar to rapidly moving Pacific salmon, they can exhibit nearly the entire range of Pacific salmon estuarine use. Both slow and rapidly migrating Atlantic and Pacific salmon actively feed in estuarine environments, consuming insect and invertebrate prey. Interactions between juvenile salmon and estuarine fish communities are poorly understood in both estuaries, although they experience similar avian and marine mammal predators. Estuaries are clearly important for Atlantic and Pacific salmon, yet our understanding of this use is currently insufficient to make informed judgments about habitat quality or overall estuary health. This review of salmonid migration through and residency within estuaries identifies actions that could hasten restoration of both Atlantic and Pacific salmon populations.  相似文献   

4.
A field experiment conducted in the River Lønningdalselven in spring 1992 supports the hypothesis that salmon lice, Lepeophtheirus salmonis, infestations may cause premature return of sea trout, Salmo trutta, juveniles, either to estuaries or to rivers. When lice infested (exposed) and uninfested (control) sea trout juveniles (post smolts) were released simultaneously into the sea, exposed fish returned to the estuarine area earlier compared with controls. Within the following two days, exposed sea trout migrated further into freshwater. At that time they were infested with a median of 62.5 lice, dominated by chalimus larvae and late juveniles. Exposed sea trout suffered from an osmoregulatory failure in sea water and this is considered one reason for infested fish returning to brackish water. While only a few control fish returned to the estuary on the day of release, some more returned to freshwater the following four days. During this time they had become heavily infested with copepodids, and carried a median of 150.0 lice. It is suggested that physiological stress and high infection pressure in the sea results in sea trout juveniles returning to estuaries and freshwater.  相似文献   

5.
1. Migratory and resident forms of salmonids coexist in many river systems. Although such coexistence is widespread, little is known about its ecological basis and no studies have compared the habitat use of premigratory juveniles and residents. 2. We employed a comparative approach to explore the differential habitat use of juvenile anadromous and resident brook trout. This required the investigation of habitat use in streams closed to anadromy, containing only resident brook trout Salvelinus fontinalis ('resident-only' streams) and streams open to anadromy, containing coexisting Atlantic salmon Salmo salar and anadromous and resident brook trout ('migrant-resident' streams). 3. We demonstrate that fast habitats (riffles) are occupied more frequently in streams with migratory brook trout relative to riffle habitats of streams with only resident brook trout. In contrast, occupation of slow current velocities (pools) was observed in both migrant-resident and resident-only streams as both stream types contain resident brook trout. The net effect is a wider distribution of occupied habitats (pool and riffles) in migrant-resident streams relative to resident-only streams, resulting in few, if any, unused habitats. 4. These results are consistent with previously reported bioenergetic, morphological and stable isotope differences observed between anadromous and resident brook trout. 5. Our findings suggest that a link exists between juvenile habitat use, metabolic costs and life-history strategies.  相似文献   

6.
Natural or anthropogenic induced variations in estuaries and the dynamics of marine fish populations potentially promote differences in connectivity between estuaries and marine areas, i.e. in their importance as nursery grounds. Within this context, an integrated assessment of the differential nursery function of the main estuaries along the Portuguese coast for commercial fish species common sole Solea solea, Senegalese sole Solea senegalensis, flounder Platichthys flesus and sea bass Dicentrarchus labrax was performed through several indicators based on available data. Contribution of individual estuaries to marine subpopulations was measured with potential metrics (juvenile density, habitat quantity, juvenile number and habitat quality within estuaries) and effective metrics (estuarine source of young adults in marine environment measured via otolith elemental fingerprints). The relationship between the two types of metrics was also assessed. Estuaries identified as important nursery and/or effective juvenile habitat (EJH) differed with species and no single estuary was best for all, highlighting species-specific regulation of nursery function. Multiple species assessment of nursery and EJH function differed among estuaries. Management and conservation of estuaries should focus on sites with higher contributions to adult subpopulations of multiple species. The importance of defining precise scientific and management objectives was emphasized by the different rankings of estuaries obtained with nursery or EJH criteria. Potential and effective contribution of estuaries were not significantly correlated, but in a quantitative analysis juvenile densities and number of juveniles seem related with effective contribution in some species. An agreement between potential and effective contributions of estuaries is concurrent with the acknowledged minor role of juvenile stage processes in regulation of recruitment to adult subpopulations.  相似文献   

7.
Summary

A review of the conservation status of fish in the estuarine environment around the South African coastline reveals that some species face serious problems associated either with habitat destruction, and its associated biological, physical and chemical components or exploitation. The 65 species considered fall into three categories; truly estuarine species, which are dependent on estuaries for their entire life; marine species dependent on estuaries during the juvenile phase of their life cycle; and marine species whose juveniles occur mainly in estuaries but are also found at sea. Included in the first two categories are 14 species of fish which are on the South African Red Data list. These comprise one species which is endangered, five which are vulnerable and eight which are rare. All groups are considered in relation to factors in estuaries which are affecting their populations. A conservation strategy is suggested for certain estuarine types or for specific estuaries which could ensure the survival of the entire range of estuarine faunas.  相似文献   

8.
The relationship between the strontium content of the outer layers of otoliths (an indication of recent marine, estuarine or riverine habitat use) and the strontium content of roe in ripe female brown trout Salmo trutta was examined in fish collected from the Pomahaka River and the lower reaches of the Clutha River, South Island, New Zealand. A close relationship was found between the strontium content of roe and the outer layers of otoliths. This finding suggests that spawned eggs collected from redds could potentially be used to track the extent of upstream spawning migrations by anadromous brown trout.  相似文献   

9.
Lacustrine-adfluvial bull trout, Salvelinus confluentus, migrate from spawning and rearing streams to lacustrine environments as early as age 0. Within lacustrine environments, cover habitat provides refuge from potential predators and is a resource that is competed for if limiting. Competitive interactions between bull trout and other species could result in bull trout being displaced from cover habitat, and bull trout may lack evolutionary adaptations to compete with introduced species, such as lake trout, Salvelinus namaycush. A laboratory experiment was performed to examine habitat use and interactions for cover by juvenile (i.e., <80 mm total length) bull trout and lake trout. Differences were observed between bull trout and lake trout in the proportion of time using cover (F 1,22.6 = 20.08, P < 0.001) and bottom (F 1,23.7 = 37.01, P < 0.001) habitat, with bull trout using cover and bottom habitats more than lake trout. Habitat selection ratios indicated that bull trout avoided water column habitat in the presence of lake trout and that lake trout avoided bottom habitat. Intraspecific and interspecific agonistic interactions were infrequent, but approximately 10 times greater for intraspecific interactions between lake trout. Results from this study provide little evidence that juvenile bull trout and lake trout compete for cover, and that species-specific differences in habitat use and selection likely result in habitat partitioning between these species.  相似文献   

10.
Bull shark (Carcharhinus leucas) is a near-threatened elasmobranch species capable of moving between the fresh and salty waters of tropical and subtropical coastal areas, for which we still lack important ecological information. During their first years of life, bull sharks use estuarine systems as nursery areas, making them highly susceptible to environmental and anthropogenic pressures. We studied the trophic ecology of juveniles found in the Coyote estuary, a potential nursery area in Costa Rica, to understand the potential impact of further bull shark declines and gain knowledge that could aid in their conservation. We analysed the trophic ecology of juvenile bull sharks [81–103 cm total length (TL)] in the Coyote estuary, Costa Rica, using stable isotopes of δ15N and δ13C. Since one problem using this technique in juveniles is the confounding effect of the maternal signature, we sampled different tissues (muscle and plasma), verified the status of the shark's umbilical scar and identified the size at which the isotope signature is a result of the animal's current diet. The isotopic values of the muscle tissue reflected the maternal isotopic signature. In contrast, plasma values reflected the diet of juvenile bull sharks >95 cm TL and with a closed umbilical scar. Juvenile bull sharks fed primarily on teleost fishes of the order Anguilliformes and Siluriformes, and have a high trophic position (≥4.0) in the Coyote estuary. Our findings suggest that this estuary is an important feeding site for juvenile bull sharks of the Pacific of Costa Rica. Thus, the protection of essential habitats such as the Coyote estuary will benefit not only bull shark conservation, but also the conservation of an array of fish species that also use this habitat as a rookery, many of which are of commercial interest.  相似文献   

11.
The Elwha River estuary has been significantly influenced by anthropogenic changes to the river, including two large dams upriver and rock dikes installed in the estuary. Together these have disrupted hydrodynamic processes and subsequent sediment delivery throughout the watershed. This article defines the functional response of fish distribution within the estuary as a result of these changes. We assessed fish distribution of three main areas of the Elwha estuary using standard beach seining techniques from March to August 2007. Species composition, ecological indices, and relative proportion of all salmonids, and in particular Chinook salmon (Oncorhynchus tshawytscha), were consistently significantly different across the estuary. Differences corresponded to a rock dike installed 30 years ago, and a sediment lens that was observed to form at the entrance to the east estuary. Sediment lenses are documented to be a common occurrence in the Elwha nearshore, and symptomatic of documented, severely disrupted sediment processes of the Elwha River. Combining the fish distribution documented in this study with the rock dike and observed sediment lens and the sediment processes documented by other researchers we, therefore, conclude: (1) Fish use within the Elwha River estuary is complex, and even fragments of connected estuary are critically important for migrating salmon; (2) Anthropogenic effects, including in river damming and diking of the estuary, can be an important ecological driver in nearshore habitat function that should be appropriately considered in estuary habitat research, management, and restoration; and (3) Juvenile salmonids appear to be able to respond to dynamic sediment environments if there are habitat options available.  相似文献   

12.
Synopsis The coastal fish assemblages of Wemindji, eastern James Bay, were studied in 1987 and 1988 to describe seasonal utilization of the Maquatua River estuary and the adjacent coastal waters by marine and anadromous fishes. Fish diversity was low (11 sp.) and experimental gill net catches were highly variable between sites in the estuary and coastal waters, and also seasonally at a given site. During summer, the estuarine fishes were numerically dominated by two marine species, the fourhorn sculpin,Myoxocephalus quadricornis, and the slender eelblenny,Lumpenus fabricii, and also by juvenile cisco,Coregonus artedii, and juvenile lake whitefish,C. clupeaformis. In coastal waters, three marine species were abundant: the shorthorn sculpin,M. scorpius, the arctic sculpin,M. scorpioides and the Greenland cod.Gadus ogac. In contrast with the estuary, large (> 270 mm) cisco and lake whitefish were abundant in coastal waters indicating extensive movements of these species in James Bay during the summer. Distribution patterns were influenced by a combination of physical conditions (salinity and temperature) and biological characteristics (habitat choice, migration and reproduction) depending on the season.  相似文献   

13.
Individual migration behaviour during the juvenile and adult life phase of the anadromous twaite shad Alosa fallax in the Elbe estuary was examined using otolith Sr:Ca and Ba:Ca profiles. Between hatching and the end of the first year of life, juveniles showed two migration patterns. Pattern one exhibited a single downstream migration from fresh water to the sea with no return into fresh water. In contrast, pattern two showed a first migration into the sea, then a return into fresh water and, finally, a second downstream migration into marine water. This first report of migration plasticity for A. fallax points to different exposure times to estuarine threats depending on the migration strategy. In adults, high Sr:Ca and low Ba:Ca in the majority of individuals confirmed prior reports of a primarily marine habitat use. Patterns reflecting spawning migrations were rarely observed on otoliths, possibly due to the short duration of visits to fresh water.  相似文献   

14.
The Mamanguape River Estuary was studied along a continuum ranging from shallow sandstone reefs adjacent to the river mouth up to the limit of influence of seawater, the upper portions of the estuary. Fish samples were gathered using three types of nets along 17 sample sites, grouped in four regions according to salinity range (reefs and low, middle and upper estuaries), to seasonality (dry and rainy seasons) and to habitat usage (marine visitor, marine estuarine-opportunist, marine estuarine-dependent, estuarine resident and estuarine &; marine). Differences were found in the fish assemblages along the estuarine-reef gradient, with most species (n?=?30) being considered marine, estuarine-opportunists or estuarine-dependent, according to its abundance and distribution. A low number of species (n?=?11) were considered estuarine residents. Some species exhibited significant differences in spatial distribution pattern, in which juveniles and adults predominated in different portions of the estuary, suggesting an ontogenetic migration both in relation to the adjacent reef area and across estuarine regions. Several species were newly recorded in the Mamanguape Estuary: Anchoa spinifer, Halichoeres poeyi, Hyporhamphus roberti, Scomberomorus cavalla, Sphyraena barracuda and Ocgocephalus vesperilio.  相似文献   

15.
Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that use the estuary, then numerous fisheries would also be negatively affected.  相似文献   

16.
Microhabitat use and availability were evaluated and compared between different size classes of juvenile resident bull trout (Salvelinus confluentus) and cutthroat trout (Oncorhynchus clarki) in a small wilderness stream within the South Fork Clearwater River basin, Idaho. The objective was to determine if utilization of measured habitat characteristics changed from summer to late fall. Sampling of fish was conducted with night snorkeling. During the summer, smaller juvenile bull trout (<66 mm) total length (TL) were associated with shallow stream margins over coarse substrates. In the fall, they moved to significantly deeper, lower velocity water, and closer to cover (p<0.05), but maintained their association with coarse substrates. During the summer, larger juvenile bull trout and larger juvenile cutthroat trout (66–130 mm TL) occupied significantly deeper water than smaller juvenile bull trout (p<0.05). Generally, larger juvenile bull trout were found closer to the bottom and in lower velocity water than larger juvenile cutthroat trout (p<0.05). In the fall, larger juvenile bull trout and larger juvenile cutthroat trout were associated with significantly deeper, lower velocity water located closer to cover than in summer (p<0.05). However, cutthroat trout occupied slightly deeper water over finer substrates than bull trout. Deep water with low velocities evidently provide important rearing areas for large bull trout and large cutthroat trout in the fall. Land management practices that maintain such environments will benefit these species.  相似文献   

17.
Estuaries are highly valuable ecosystems that provide various goods and services to society, such as food provision and supporting nursery habitats for various aquatic species. Estuarine habitat quality assessment is thus critical in managing both ecological and economic value. In this work, various biological and non-biological indicators of habitat quality in estuarine nursery areas were determined, encompassing local environmental conditions, chemical contamination, anthropogenic pressures, juvenile Solea senegalensis condition, biomarkers response to contamination and juvenile density. The various indicators provided an integrated view on habitat quality and their responses were broadly concordant. Nursery quality assessment based on anthropogenic pressure indicators and fish biomarker responses were very similar, signaling nursery areas with higher anthropogenic pressure in Tejo and Ria de Aveiro estuaries. Yet, favorable environmental conditions across all sites could have contributed to lessen the potential hazardous biological effects of exposure to anthropogenic stressors, resulting in soles’ fairly good condition and generally high juvenile density. Nevertheless, a mismatch between high juvenile density and high estuarine contribution to adult coastal populations was observed in areas with higher anthropogenic pressures. Although a causal relationship cannot be established, the results emphasize the need to fully understand how the estuarine period spent in estuaries and local processes determine the quantity and quality of juveniles exported to marine adult populations, which is critical to achieve the full potential of the fish production service of estuaries and coastal stock replenishment.  相似文献   

18.
The structure and components of European estuarine fish assemblages   总被引:8,自引:0,他引:8  
This paper discusses the structure of fish assemblages using information from 17 European estuarine areas (in the British Isles, Portugal, Belgium, France, the Netherlands, Germany, Norway and Spain). Binary (presence/absence) and quantitative data for each assemblage have been used to assess the assemblage structure according to taxonomy (i.e. species identity). Following this, a total of 29 functional guilds were created in order to describe the use made of an estuarine area for each taxon encountered: feeding preferences, reproduction type, substratum preferences (for bottom dwelling fish) and position within the water column (vertical preference guild). The paper focuses on the designation and determination of the proportions of the guild members of the fish assemblage within each estuary. Ecological guilds within the assemblage include estuarine residents, marine juvenile migrants, catadromous and anadromous migrants, marine seasonal users, and freshwater and marine adventitious species. Feeding guilds include detritivores, planktonic feeders, infaunal croppers and sediment ingesters, piscivores, and active predators of mobile crustaceans. Reproduction guilds include planktonic and demersal spawners and those using brood-protection. The substratum preference indicates the proportions of sand, mud, rock and vegetation dwellers, and the vertical preference denotes benthic, demersal or pelagic species. The analysis has allowed both the estuaries to be grouped according to taxonomic and guild similarity and the characterisation of a typical European estuarine fish assemblage. Within the limits posed by differing sampling methods, times of sampling and survey rationale, there is a high similarity between estuaries. The data indicate common patterns of estuarine usage irrespective of the differences between the estuaries although such patterns cannot be interpreted fully given the incomplete knowledge of their physical and anthropogenic characteristics.  相似文献   

19.
River flow can impact which sources of particulate organic matter (POM) fuel estuarine food webs. Here, we used stable carbon (C) and nitrogen (N) isotope analyses to compare how contributions of different POM sources (terrestrial, estuarine, and marine) to the diets of zooplankton and juvenile fishes differed between low and high river flow conditions, as well as spatially across a tropical estuary, Hilo Bay, Hawaii, USA. Diets of zooplankton and juvenile fishes were affected by river flow conditions, but the magnitude and the change in the basal resources depended on the location of the station in the estuary relative to the ocean and the river mouths. Consumers from the station most isolated from the ocean and with groundwater and overland flow inputs, utilized a combination of estuarine and terrestrial POM during both low and high river flow conditions and exhibited less variability in their basal resources than stations with direct ocean exchange. Consumers from stations in the Bay most affected by ocean exchange and river inputs utilized a combination of estuarine, terrestrial, and marine POM during low flow conditions, but shifted to marine and terrestrial POM during high river flow conditions. This shift to using terrestrial POM during high river flow conditions was substantial and up to 40% higher than values measured in other estuaries. Factors suspected to be affecting which POM source(s) consumers use in Hilo Bay are gross primary production, biological availability of exported terrestrial OM, and estuarine bacteria biomass, all of which are affected by river flow. Overall, our results suggest that Hilo Bay's food web and possibly those from other tropical estuaries are vulnerable to changes in hydrology, which may be further enhanced by global climate change.  相似文献   

20.
Synopsis Some 190 South African estuaries, covering all biogeographic provinces within the region, were classified into three types based on a combination of mouth condition and estuary size (surface area). The fish communities of the estuary types within each zoogeographic region were described and compared. Multivariate analyses revealed that each estuary type contained somewhat distinct fish communities. In addition, the study identified common patterns in species richness and ichthyofaunal composition. Open estuaries have relatively high species richness; this is a reflection of a permanent or near-permanent connection with the sea which allows access into these estuaries by all marine migrant species within the region. Intermittent connection with the sea limits the recruitment and utilisation of closed estuaries by marine migrant species; this results in reduced species richness in moderate to large closed estuaries. Small closed estuaries exhibit the lowest species richness and this is probably a result of their limited habitat and increased isolation from the sea. The key fishes that utilise estuaries could also be categorised into a number of groups based on their relative importance within each estuary type. Some species are largely restricted to predominantly open systems. Other taxa, while important in predominantly open estuaries, also occur in moderate to large closed systems. Some estuarine-associated species are well represented in all estuary types but exhibit a greater importance in closed estuaries. This study has shown that South African fish communities not only reflect estuarine typology but also respond to these differences in a consistent manner that spans all zoogeographic regions. The prevalence of similar patterns in other parts of the world suggests that estuarine typology is a major driver in the structuring of global estuarine fish communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号