首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduced predators have caused some of the largest documented impacts of non-native species. Interactions among predators can have complex effects, leading to both synergistic and antagonistic outcomes. Complex interactions with native predators could play an important role in mediating the impact of non-native predators. We explore the role of the native predator context on the effect of the introduced predatory cladoceran Bythotrephes longimanus. While post-invasion impacts have been well described, studies have largely ignored the role of native predators. We used a field mesocosm experiment to determine whether Bythotrephes’ impact on prey communities is influenced by the presence of the ubiquitous native predatory insect larvae Chaoborus. The two predators exhibited niche complementarity as no change in total zooplankton prey abundance was detected across predator treatments. Rather, copepod abundances increased with decreasing abundances of Chaoborus, while cladocerans decreased with increasing abundances of Bythotrephes. Thus, the replacement of Chaoborus with Bythotrephes led to changes in the overall community structure of the zooplankton prey, but had little effect on prey total abundance. More interestingly, we found evidence of biotic resistance of impact, that is, the impact of Bythotrephes on the cladoceran community was altered when the two predators co-occurred. Specifically, the predation effect of Bythotrephes was more restricted to the shallower regions of the water column in the presence of Chaoborus, leading to a reduced impact on deeper dwelling prey taxa. Overall, our results demonstrate that the native predator context is important when trying to understand the effect of non-native predators and that variation in native predator abundances and assemblages could explain variation in impact across invaded habitats.  相似文献   

2.
Invasive predators typically have larger effects on native prey populations than native predators, yet the potential roles of their consumptive versus non-consumptive effects (CEs vs. NCEs) in structuring invaded systems remains unclear. Invasive lionfish (Pterois volitans) may have ecosystem-level effects by altering native fish grazing on benthic algae that could otherwise displace corals. Lionfish could reduce grazing by decreasing the abundance of herbivorous fishes (CEs), and/or the predation risk posed by lionfish could alter grazing behavior of fishes (NCEs). To test for these CEs, we manipulated lionfish densities on large reefs in The Bahamas and surveyed fish populations throughout June 2009–2011. In July 2011, NCEs of lionfish were measured by observing fish grazing behavior on algal-covered substrata placed in microhabitats varying in lionfish presence at different spatial scales, and quantifying any resulting algal loss. Lionfish reduced small herbivorous fish density by the end of the 2010 summer recruitment season. Grazing by small and large fishes was reduced on high-lionfish-density reefs, and small fish grazing further decreased when in the immediate presence of lionfish within-reefs. Lionfish had a negative indirect effect on algal loss, with 66–80 % less algae removed from substrata in high-lionfish-density reefs. Parrotfishes were likely driving the response of herbivorous fishes to both CEs and NCEs of lionfish. These results demonstrate the importance of considering NCEs in addition to CEs of invasive predators when assessing the effects of invasions.  相似文献   

3.
One of the many ways that invasive species can affect native ecosystems is by modifying the behavioural and ecological interactions among native species. For example, the arrival of the highly toxic cane toad (Bufo marinus) in tropical Australia has induced toad-aversion in some native predators. Has that shift also affected the predators’ responses to native prey—for example, by reducing vulnerability of native tadpoles via a mimicry effect, or increasing vulnerability of other prey types (such as insects) via a shift in predator feeding tactics? We exposed a native predator (northern trout gudgeon, Mogurnda mogurnda) to toad tadpoles in the laboratory, and measured effects of that exposure on the fish’s subsequent intake of native tadpoles and crickets. As predicted, toad-exposed fishes reduced their rate of predation on (palatable) tadpoles of native frogs (Litoria caerulea and L. nasuta). If alternative prey (crickets) were available also, the toad-exposed fishes shifted even more strongly away from predation on native tadpoles. Thus, invasion of a toxic species can provide a mimicry benefit to native taxa that resemble the invader, and can shift predation pressure onto other taxa.  相似文献   

4.
Examining the functional response of predators can provide insight into the role of predation in structuring prey populations and ecological communities. This study explored feeding behaviour and functional responses of planktivorous damselfishes when offered captive reared larvae of crown-of-thorns starfish, Acanthaster sp., with the aim of determining whether these predators could ever play a role in moderating outbreaks of Acanthaster sp. We examined predatory behaviour of 11 species of planktivorous damselfish, testing: (1) the relationship between predator size and predation rate, both within and among fish species; (2) consumption rates on larvae of Acanthaster sp. versus larvae of a common, co-occurring coral reef asteroid Linckia laevigata; (3) maximal feeding rates upon both Acanthaster sp. and L. laevigata; and (4) functional responses of planktivorous fishes to increasing densities of Acanthaster sp. Consumption rates of crown-of-thorns larvae by damselfishes were independent of predator size; however, there was a significant negative relationship between predator size and consumption rate of L. laevigata, when pooling across all predatory species. Some damselfishes, including Acanthochromis polyacanthus and Amblyglyphidodon curacao, consumed larval Acanthaster sp. at a greater rate than for L. laevigata. Most predatory species (all except A. curacao and Pomacentrus amboinensis) exhibited a Type II functional response whereby the increasing feeding rate decelerated with increasing prey density. In addition to revealing that a wide range of planktivorous fishes can prey upon larvae of Acanthaster sp., these data suggest that planktivorous damselfishes may have the capacity to buffer against population fluctuations of Acanthaster sp. Importantly, predators with Type II functional responses often contribute to stability of prey populations, though planktivorous fishes may be swamped by an abnormally high influx of larvae, potentially contributing to the characteristic population fluctuations of Acanthaster sp.  相似文献   

5.
Invasive Indo-Pacific red lionfish (Pterois volitans) have become well-established residents within reef communities across the western Atlantic Ocean where they pose substantial threats to native fish communities and reef ecosystems. Species-specific identification of prey is necessary to elucidate predator–prey interactions, but can be challenging with traditional visual identification methods given prey are often highly digested, thus not identifiable visually. To supplement visual diet analysis of lionfish (n = 934) sampled in the northern Gulf of Mexico, we applied DNA barcoding to identify otherwise unidentifiable fish prey (n = 696) via amplification of the cytochrome c oxidase subunit I (COI) of the mitochondrial genome. Barcoding nearly doubled the number of identifiable fish prey, thereby greatly enhancing our ability to describe lionfish diet. Thirty-three fish prey species were identified via barcoding, twenty-four of which were not previously detected by traditional methods. Some exploited reef fishes were newly reported (e.g., red snapper, Lutjanus campechanus) or found to constitute higher proportions of lionfish diet than previously reported (e.g., vermilion snapper, Rhomboplites aurorubens). Barcoding added a significant amount of new dietary information, and we observed the highest prey diversity reported to date for invasive lionfish. Potential cannibalism on juveniles also was identified via DNA barcoding, with the highest incidence corresponding to high lionfish densities, thus suggesting density-dependent prey demand may have driven this response. Overall, DNA barcoding greatly enhanced our ability to describe invasive lionfish diet in this study, suggesting that even studies with relatively large diet sample sizes could benefit from barcoding analysis.  相似文献   

6.
Non-native predators can cause major declines or even localised extinctions in prey populations across the globe, especially on islands. The removal of non-native predators can, therefore, be a crucial conservation management tool but there can be challenges when they are viewed as charismatic in their own right. Four decades after their introduction to islands in the Outer Hebrides, Scotland, European hedgehogs Erinaceus europaeus continue to be an important nest predator for a declining population of breeding waders. Where hedgehogs were rare, clutch survival rates (assessed using nest temperature loggers) of five species of waders (dunlin Calidris alpina, lapwing Vanellus vanellus, redshank Tringa totanus, snipe Gallinago gallinago and ringed plover Charadrius hiaticula) were higher than where hedgehogs were relatively more abundant. Hedgehogs were the most frequent nest predator identified using cameras. However, factors influencing population sizes of breeding waders are complex and unlikely to be attributable to a single species of predator. The interactions between predation, land use, habitat and the changes in each deserve further attention.  相似文献   

7.
Invasive species are a regional and global threat to biological diversity. In order to evaluate an invasive predator species’ potential to harm populations of native prey species, it is critical to evaluate the behavioral responses of all life stages of the native prey species to the novel predator. The invasion of the African clawed frog (Xenopus laevis) into southern California provides an opportunity to evaluate the predation risk and behavioral responses of native amphibians. We performed predation trials and explored prey behavioral responses to determine how this invasive predator may impact native amphibian populations using Pacific chorus frogs (Pseudacris regilla) as a representative native California prey species. We found that X. laevis will readily prey upon larval and adult life stages of P. regilla. Behavior trials indicated that both larval and adult P. regilla exhibit prey response behaviors and will spatially avoid the novel invasive predator. The results suggest that native anurans may have a redundant predator response in both the larval and adult life stages, which could reduce the predatory impact of X. laevis but also drive emigration of native amphibians from invaded habitat.  相似文献   

8.
Among the predators with high potential for use in biological control, the species of the genus Podisus (Hemiptera: Pentatomidae) have received special attention for laboratory rearing, since they feed on different agricultural and forestry pest insects. However, the type of diet offered to insects in the laboratory may affect the viability of populations, expressed essentially by demographic parameters such as survival and fecundity. This study assessed demographic and development aspects in experimental populations of Podisus nigrispinus (Dallas, 1851) fed on larvae of Chrysomya putoria (Wiedemann, 1818) (Diptera: Calliphoridae) as an alternative prey. The demographic parameters fecundity and survival were investigated in life stages of P. nigrispinus with ecological modeling, by applying the Leslie matrix population model, producing histograms of life stages in successive time steps. The functional response of P. nigrispinus was also investigated on seven densities of C. putoria third-instar larvae at 24 and 48 h. The survival of predators that reached adulthood was 65% and the development time from egg to adult was 23.15 days. The predator showed a type III functional response for consumption of C. putoria at 24 and 48 h. The Leslie-matrix simulation of the age structure provided perpetuation of the predator population over time steps and the prey proved to be feasible for use in rearing and maintenance of P. nigrispinus in the laboratory.  相似文献   

9.
The introduction of invasive alien predators often has catastrophic effects on populations of naïve native prey, but in situations where prey survive the initial impact a predator may act as a strong selective agent for prey that can discriminate and avoid it. Using two common species of Australian small mammals that have persisted in the presence of an alien predator, the European red fox Vulpes vulpes, for over a century, we hypothesised that populations of both would perform better where the activity of the predator was low than where it was high and that prey individuals would avoid signs of the predator’s presence. We found no difference in prey abundance in sites with high and low fox activity, but survival of one species—the bush rat Rattus fuscipes—was almost twofold higher where fox activity was low. Juvenile, but not adult rats, avoided fox odour on traps, as did individuals of the second prey species, the brown antechinus, Antechinus stuartii. Both species also showed reduced activity at foraging trays bearing fox odour in giving-up density (GUD) experiments, although GUDs and avoidance of fox odour declined over time. Young rats avoided fox odour more strongly where fox activity was high than where it was low, but neither adult R. fuscipes nor A. stuartii responded differently to different levels of fox activity. Conservation managers often attempt to eliminate alien predators or to protect predator-naïve prey in protected reserves. Our results suggest that, if predator pressure can be reduced, otherwise susceptible prey may survive the initial impact of an alien predator, and experience selection to discriminate cues to its presence and avoid it over the longer term. Although predator reduction is often feasible, identifying the level of reduction that will conserve prey and allow selection for avoidance remains an important challenge.  相似文献   

10.
Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavior with predator ecology: (1) widely foraging predators have the potential to suppress populations of sedentary herbivores; (2) sit and wait predators are unlikely to suppress populations of sedentary herbivores; and (3) sit and wait predators may act as top predators, suppressing populations of widely foraging intermediate predators and thereby releasing sedentary herbivore populations from control. Manipulative field experiments conducted with the arthropod community found on papaya, Carica papaya, provided support for the first two predictions: (1) the widely foraging predatory mite Phytoseiulus macropilis strongly suppressed populations of a sedentary herbivore, the spider mite Tetranychus cinnabarinus, whereas (2) the tangle-web spider Nesticodes rufipes, a classic sit and wait predator, failed to suppress Tetranychus population growth rates. However, our experiments provided no support for the third hypothesis; the sit and wait predator Nesticodes did not disrupt the suppression of Tetranychus populations by Phytoseiulus. This contrasts with an earlier study that demonstrated that Nesticodes can disrupt control of Tetranychus generated by another widely foraging predator, Stethorus siphonulus. Behavioral observations suggested a simple explanation for the differing sensitivity of Phytoseiulus and Stethorus to Nesticodes predation. Phytoseiulus is a much smaller predator than Stethorus, has a lower rate of prey consumption, and thus has a much smaller requirement to forage across the leaf surface for prey, thereby reducing its probability of encountering Nesticodes webs. Small body size may be a general means by which widely foraging intermediate predators can ameliorate their risk of predation by sit and wait top predators. This effect may partially or fully offset the general expectation from size-structured trophic interactions that smaller predators are subject to more intense intraguild predation.  相似文献   

11.
The peacock hind Cephalopholis argus (family Serranidae), locally known as ‘roi’, was introduced from French Polynesia to Hawaii in the mid-twentieth century as a food fish. However, because of its association with ciguatera fish poisoning, it is rarely fished for food. Previous research indicates that roi could have a negative impact on native reef fish assemblages because of their high densities and prey consumption rates. However, it is unclear whether roi add to the cumulative mortality of prey (predation hypothesis), or whether predation is instead compensatory (doomed surplus hypothesis). This study experimentally assessed the effects of roi on reef fish populations through a long-term (5.5 year) predator removal experiment. A Before-After-Control-Impact study design was used to assess changes in fish assemblages following the removal of roi on 1.3 ha of patch reef. Increases in the density of prey-sized fish (<15 cm TL) were observed 18 months after roi removal. However, those effects did not translate into sustained increases in prey. While increases in potential competitors, wrasses (family Labridae), particularly the piscivorous ringtail wrasse Oxycheilinus unifasciatus, were observed on roi-free reefs, the fish assemblage did not diverge substantially in composition. Native reef fish appeared to resist the potential negative impacts of predation by roi, possibly through a refuge in size for some fish families. Management to protect intact fish assemblage size-structure could serve to bolster native resistance to invading species. In considering the threats facing coral reefs, and the possible solutions, roi removal alone will not likely replenish native fishery resources.  相似文献   

12.
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.  相似文献   

13.
Temperature influences the geographic range, physiology, and behavior of many ectothermic species, including the invasive lionfish Pterois sp. Thermal parameters were experimentally determined for wild-caught lionfish at different acclimation temperatures (13, 20, 25 and 32 °C). Preferences and avoidance were evaluated using a videographic shuttlebox system, while critical thermal methodology evaluated tolerance. The lionfish thermal niche was compared experimentally to two co-occurring reef fishes (graysby Cephalopholis cruentata and schoolmaster Lutjanus apodus) also acclimated to 25 °C. The physiologically optimal temperature for lionfish is likely 28.7 ± 1 °C. Lionfish behavioral thermoregulation was generally linked to acclimation history; tolerance and avoidance increased significantly at higher acclimation temperatures, but final preference did not. The tolerance polygon of lionfish shows a strong correlation between thermal limits and acclimation temperature, with the highest CTmax at 39.5 °C and the lowest CTmin at 9.5 °C. The tolerance range of invasive lionfish (24.61 °C) is narrower than those of native graysby (25.25 °C) and schoolmaster (26.87 °C), mostly because of lower thermal maxima in the former. Results show that lionfish display “acquired” thermal tolerance at higher and lower acclimation temperatures, but are no more eurythermal than other tropical fishes. Collectively, these results suggest that while lionfish range expansion in the western Atlantic is likely over the next century from rising winter sea temperatures due to climate change, the magnitude of poleward radiation of this invasive species is limited and will likely be equivalent to native tropical and subtropical fishes with similar thermal minima.  相似文献   

14.
Silver Carp Hypophthalmicthys molitrix (Valenciennes, 1844) are an invasive species in the Mississippi River Basin and their current role in this novel ecosystem is not fully understood. Juvenile Silver Carp can and do occur in great numbers after a successful spawn. These massive schools of small Silver Carp seem to be an obvious prey source for the common predators of the Mississippi River system. The level to which native piscivores are consuming this novel prey item is unclear. Therefore, the goal of this research was to assess the diets of native piscivores collected in Pool 26 and the Open River reach of the Mississippi River. Using diet contents and catch rates of small fishes, selection or avoidance could be determined for predator prey interactions. Then a controlled laboratory experiment was conducted to determine if common predators [White Bass Morone chrysops and Largemouth Bass Micropterus salmoides (Lacepede, 1802)] would select for or against this novel prey in the presence of two native prey fish [Gizzard Shad Dorosoma cepedianum (Lesueur, 1818) and Emerald Shiner Notropis atherinoides]. Understanding how predator-prey interactions occur in a controlled laboratory experiment may provide insight to trends observed in the field. The majority of native piscivores appeared to be avoiding Silver Carp in both reaches and selecting native prey fishes. The order in which prey fish were consumed by both predators showed significant avoidance of Silver Carp. It appears that the trends observed in the field were supported by our controlled laboratory experiment. The effectiveness of different native piscivores to consume Silver Carp may have impacts on future management decisions.  相似文献   

15.
A major focus of ecology is understanding trophic relationships and energy flows in natural systems, associated food web dynamics and changes in food webs due to introduced species. Predator-prey interactions are often assessed by examining stomach contents. However, partially digested remains may be difficult to accurately identify by traditional visual analysis. Here we evaluate the effectiveness of DNA barcoding to identify digested piscine prey remains in invasive Blue Catfish Ictalurus furcatus, non-native, but established Channel Catfish Ictalurus punctatus and native White Catfish Ameiurus catus from Chesapeake Bay, USA. Stomach contents were examined and piscine prey items were scored as lightly digested, moderately digested or severely digested. A 652 base pair region of the cytochrome c oxidase subunit I (COI-5P) mitochondrial DNA gene was sequenced for each prey item. Edited barcode sequences were compared to locally-caught and validated reference sequences in BOLD (Barcode of Life Database). A large majority of prey items were sufficiently digested to limit morphological identification (9.4 % to species and an additional 12.1 % to family). However, overall barcoding success was high (90.3 %) with little difference among the digestion classifications. Combining morphological and genetic identifications, we classified 91.6 % of fish prey items to species. Twenty-three fish species were identified, including species undergoing active restoration efforts (e.g., Alosa spp.) and commercially important species, e.g., Striped Bass Morone saxatilis, White Perch Morone americana, American Eel Anguilla rostrata and Menhaden Brevoortia tyrannus. We found DNA barcoding highly successful at identifying all but the most heavily degraded prey items and to be an efficient and effective method for obtaining diet information to strengthen the resolution of trophic analyses including diet comparisons among sympatric native and non-native predators.  相似文献   

16.
DNA barcoding is used in a variety of ecological applications to identify organisms, including partially digested prey items from diet samples. That particular application can enhance the ability to characterize diet and predator–prey dynamics but is problematic when genetic sequences of prey match those of consumer species (i.e., self-DNA). Such a result may indicate cannibalism, but false positives can result from contamination of degraded prey samples with consumer DNA. Here, nuclear-encoded microsatellite markers were used to genotype invasive lionfish, Pterois volitans, consumers and their prey (n?=?80 pairs) previously barcoded as lionfish. Cannibalism was confirmed when samples exhibited two or more different alleles between lionfish and prey DNA across multiple microsatellite loci. This occurred in 26.2% of all samples and in 42% of samples for which the data were considered conclusive. These estimates should be considered conservative given rigorous assignment criteria and low allelic diversity in invasive lionfish populations. The highest incidence of cannibalism corresponded to larger sized consumers from areas with high lionfish densities, suggesting cannibalism in northern Gulf of Mexico lionfish is size- and density-dependent. Cannibalism has the potential to influence population dynamics of lionfish which lack native western Atlantic predators. These results also have important implications for interpreting DNA barcoding analysis of diet in other predatory species where cannibalism may be underreported.  相似文献   

17.
18.
Recognising potential predators is critical for the survival and reproduction of prey animals. However, prey animals may possess an innate ability to recognise the signature odours (kairomones) of only certain native, sympatric predators, while requiring learning to recognise others. Our observations have shown that larval skipper frogs (Euphlyctis cyanophlyctis) fail to recognise kairomones of dragonfly nymph, a common predator of amphibian tadpoles with a cosmopolitan distribution. Hence, we wanted to determine if larval skipper frogs totally lack an innate mechanism to recognise kairomones of all aquatic predators, or have an innate ability to recognise kairomones of only certain predators. In a series of experiments, we tested the antipredator response of larval skipper frogs to kairomones of dragonfly nymph (Bradinopyga geminata); walking catfish (Clarias batrachus); Mozambique tilapia (Oreochromis mossambicus); two species of predatory tadpoles, Indian bullfrog (Hoplobatrachus tigerinus) and Jerdon’s bullfrog (Hoplobatrachus crassus); and the checkered keel back snake (Xenochrophis piscator). The results clearly indicate that larval skipper frogs have the innate ability to recognise kairomones of the walking catfish, both species of larval bullfrog and checkered keel back snake. However, they lack the innate ability to recognise kairomones of dragonfly nymph and Mozambique tilapia. Prey choice of the Mozambique tilapia and gape-limitation of dragonfly nymphs could be responsible for the lack of innate responses of larval skipper frogs to them. The study provides empirical evidence for the notion that prey can innately recognise certain predators.  相似文献   

19.
Generalist predators have to deal with prey with sometimes very different morphologies and defensive behaviors. Therefore, such predators are expected to express plasticity in their predation strategy. Here we investigated the predatory behavior of the recluse spider Loxosceles rufipes (Araneae, Sicariidae) when attacking prey with different morphologies and defensive mechanisms. We expected L. rufipes to show different prey capture strategies and variable acceptance towards each prey type. Potential prey species were collected directly from the web or in the surroundings of the web-building site of L. rufipes. We collected and used the following in our experiments: termite workers (Nasutitermes sp.), lepidopteran larvae (Eurema salome), ants (Camponotus sp.) and isopods (Tylidae). We paired these prey with L. rufipes and recorded their behavior in captivity, quantifying acceptance rate, immobilization time and the sequence of behaviors by the predator. The acceptance rate was lower for isopods but not different among other prey. The immobilization time was higher for isopods than for termites and similar for the other pairwise comparisons. The behavioral sequence was similar for all prey except for isopods, which were also bit more often. Our combined results show plasticity in the behavior of L. rufipes and also show it subdues a potentially dangerous prey (ant) and an armored prey (isopod).  相似文献   

20.
The prey naiveté hypothesis suggests that native prey may be vulnerable to introduced predators because they have not evolved appropriate defenses. However, recent evidence suggests that native prey sometimes exhibit induced defenses to introduced predators, as a result of rapid evolution or other processes. We examined whether Olympia oysters (Ostrea lurida) display inducible defenses in the presence of an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea), and whether these responses vary among oyster populations from estuaries with and without this predator. We spawned oysters from six populations distributed among three estuaries in northern California, USA, and raised their offspring through two generations under common conditions to minimize effects of environmental history. We exposed second-generation oysters to cue treatments: drills eating oysters, drills eating barnacles, or control seawater. Oysters from all populations grew smaller shells when exposed to drill cues, and grew thicker and harder shells when those drills were eating oysters. Oysters exposed to drills eating other oysters were subsequently preyed upon at a slower rate. Although all oyster populations exhibited inducible defenses, oysters from the estuary with the greatest exposure to drills grew the smallest shells suggesting that oyster populations have evolved adaptive differences in the strength of their responses to predators. Our findings add to a growing body of literature that suggests that marine prey may be less likely to exhibit naiveté in the face of invasive predators than prey in communities that are more isolated from native predators, such as many freshwater and terrestrial island ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号