首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flooding regimes are a primary influence on the wetland plant community. Human-induced disturbance often changes the duration and frequency of flooding in wetlands, and has a marked influence on wetland plant composition and viability. Comprehensive studies of the environmental thresholds of wetland plants are required for the development of proper practices for wetland management and restoration after hydrological disturbance. This study provides a quantitative assessment of the establishment, growth, and community shifts in dominance of three emergent plant species (Scirpus tabernaemontani, Typha orientalis, and Zizania latifolia) typical of South Korean wetlands, under five hydrological regimes (waterlogged, low-level standing water, high-level standing water, intensive periodic flooding, and intermittent flooding) over four growing seasons. A mesocosm experiment was conducted in the campus of Seoul National University, South Korea. The number and biomass of shoots of Z. latifolia responded positively to increased water level and flooding frequency, while that of the other plants did not. Zizania latifolia outcompeted S. tabernaemontani and T. orientalis irrespective of hydrological regime. This study suggests that Z. latifolia can outcompete the other two macrophytes in the field. This study will improve our ability to predict the dynamics of wetland vegetation and so facilitate the formulation of wetland management and restoration strategies.  相似文献   

2.
Growth and recruitment were examined in two arctic-boreal, shallow water marine perciform species: the fish doctor Gymnelus viridis (Zoarcidae) and the Arctic shanny Stichaeus punctatus (Stichaeidae). G. viridis ranges in the Canadian Arctic from northern Hudson Bay to northern Ellesmere Island, whereas S. punctatus has a more southerly range from Nova Scotia coastal waters to northern Hudson Bay. At Nuvuk Islands in northeastern Hudson Bay, where the two species are sympatric in shallow water, they had comparable juvenile growth rates but temporal variation in 0+ recruitment was substantially greater in S. punctatus. This difference may stem from their contrasting early life histories. S. punctatus spawns large numbers of small demersal eggs that hatch into pelagic larvae, whereas G. viridis spawns small numbers of large demersal eggs that hatch directly into demersal juveniles with no pelagic stage, suggesting that recruitment in G. viridis should be less sensitive to yearly variation in the onset of the ice-free period in Hudson Bay and the subsequent pulse of pelagic invertebrate production. Relative to Nuvuk, recruitment variation in G. viridis was found to be greater at Resolute, Cornwallis Island, close to its northern range limit, whereas recruitment variation in S. punctatus was not evident in Newfoundland, closer to its southern range limit.  相似文献   

3.
The emergent wetland plant Schoenoplectus californicus is used as fiber in several American countries, but the effects of harvesting on this species have not previously been studied. We analyzed the biomass production, stem density and morphometry of this species along fluvio-estuarine and flooding gradients and evaluated the effects of harvesting on growth and recovery capacity in the Santa Lucía River (Uruguay), comparing river sections and surface elevations. Differences in biomass, length and stem density were associated with the dynamics of the hydrological regime. The mean biomass and length growth rates were 3.0 ± 2.8 g day?1 and 0.8 ± 0.5 cm day?1, respectively. The analysis of the postharvest growth dynamic showed variation among the stems, suggesting the existence of mechanisms of plant compensation for the harvest effect. Six months after the harvest, S. californicus had recovered, e.g., in stem length and density, while the biomass showed a slower recovery. Our results suggest that the recovery capacity of this species depends on the population structure before the harvest and on favorable conditions during the recovery period. Based on our results, we recommend strategies for sustainable harvest management.  相似文献   

4.
Ting Ma  Jia Huang 《Biologia》2018,73(12):1205-1213
A new species of the genus Morellia Robineau-Desvoidy, 1830, Morellia (Morellia) trifurcata sp. n., collected from Yunnan, China is described. Four DNA sequences of the partial mitochondrial cytochrome c oxidase subunit I (mtCOI) gene of this new species are provided. In order to evaluate the availability of DNA barcoding for identifying Morellia species, 38 currently available, non-identical COI sequences of 16 Morellia species are involved in a molecular analysis using the neighbor-joining (NJ) method. The intra- and interspecific p-distances are summarized.  相似文献   

5.
Studies seeking to identify sources of variability and trade-offs in leaf traits have done so by assembling large databases of traits, across species and time points. It is unclear to what extent interspecific patterns derived in such a manner apply to intraspecific variation, particularly at regional scales, and the extent to which interspecific patterns vary temporally. We tested the hypothesis that the leaf traits of two foundation species, the mangrove Avicennia marina and the eelgrass Zostera muelleri, would display similar patterns of intraspecific variability across gradients of latitude and estuarine condition, that match previously reported interspecific patterns, and that persist through time. We found intraspecific patterns of decreasing carbon to nitrogen ratio and mechanical elasticity, and increasing nitrogen content with latitude that were consistent between the two plant species, and with previously reported interspecific patterns for other groups of species. Specific leaf area, leaf toughness and total phenolics, by contrast, displayed species-specific patterns that varied markedly through time. Relationships between estuarine condition and leaf traits were highly variable temporally, and also displayed markedly different patterns of intraspecific variability between the two species. Our study highlights the considerable within-species variation in leaf traits that should be accounted for in regional to biome scale analyses. Although some intraspecific patterns mirrored those found across species, at global scales, the considerable variability in other leaf traits between species and through time highlights the need to better understand the drivers and constraints of this intraspecific variation.  相似文献   

6.
Predicting the effect of a changing environment, e.g., caused by climate change, on realized niche dynamics, and consequently, biodiversity is a challenging scientific question that needs to be addressed. One promising approach is to use estimated demographic parameters for predicting plant abundance and occurrence probabilities. Using longitudinal pinpoint cover data sampled along a hydrological gradient in the Marais poitevin grasslands, France, the effect of the gradient on the demographic probabilities of colonization and survival was estimated. The estimated probabilities and calculated elasticities of survival and colonization covaried with the observed cover of the different species along the hydrological gradient. For example, the flooding tolerant grass A. stolonifera showed a positive response in both colonization and survival to flooding, and the hydrological gradient is clearly the most likely explanation for the occurrence pattern observed for A. stolonifera. The results suggest that knowledge on the processes of colonization and survival of the individual species along the hydrological gradient is sufficient for at least a qualitative understanding of species occurrences along the gradient. The results support the hypothesis that colonization has a predominant role for determining the ecological success along the hydrological gradient compared to survival. Importantly, the study suggests that it may be possible to predict the realized niche of different species from demographic studies. This is encouraging for the important endeavor of predicting realized niche dynamics.  相似文献   

7.
Summary With limited evidence linking Australia's Murray‐Darling Basin fish species and flooding, this study assessed annual variation in abundance and recruitment levels of a small‐bodied, threatened floodplain species, the Southern Pygmy Perch (Nannoperca australis), in floodplain habitats (creeks, lakes and wetlands) in the Barmah‐Millewa Forest, Murray River, Australia. Spring and summer sampling over a 5‐year period encompassed large hydrological variation, including 1 year of extended floodplain inundation which was largely driven by an environmental water release, and 2 years of severe regional drought. Recruitment and dispersal of Southern Pygmy Perch significantly increased during the floodplain inundation event compared with the other examined years. This study provides valuable support for an environmental water allocation benefiting a native species, and explores the link between flooding and its advantages to native fish. This suggests that the reduced flooding frequency and magnitude as a result of river regulation may well be a major contributing factor in the species’ decline in the Murray‐Darling Basin.  相似文献   

8.
Efforts to detect loci under selection in plants have mostly focussed on single species. However, assuming that intraspecific divergence may lead to speciation, comparisons of genetic variation within and among recently diverged taxa can help to locate such genes. In this study, coalescent and outlier detection methods were used to assess nucleotide polymorphism and divergence at 79 nuclear gene fragments (1212 SNPs) in 16 populations (153 individuals) of the closely related, but phenotypically and ecologically distinct, pine taxa Pinus mugo, P. uliginosa and P. uncinata across their European distributions. Simultaneously, mitochondrial DNA markers, which are maternally inherited in pines and distributed by seeds at short geographic distance, were used to assess genetic relationships of the focal populations and taxa. The majority of nuclear loci showed homogenous patterns of variation between the taxa due to a high number of shared SNPs and haplotypes, similar levels of polymorphism, and low net divergence. However, against this common genetic background and an overall low population structure within taxa at mitochondrial markers, we identified several genes showing signatures of selection, accompanied by significant intra- and interspecific divergence. Our results indicate that loci involved in species divergence may be involved in intraspecific local adaptation.  相似文献   

9.
Genetic diversity of 13 species of the genus Vincetoxicum Wolf found in Ukraine with the use of four of eight nuclear microsatellite markers previously developed for Vincetoxicum atratum from Japan was studied. The number of alleles in studied loci varied in the range from 8 to 25. The expected heterozygosity was 0.690–0.938; the observed heterozygosity varied in the range from 0.205 to 0.806. The total rate of genetic variability of studied species was found to be comparable to the rate of variability of Vincetoxicum atratum from Japan. Microsatellite loci Vinc5, Vinc104, Vinc123, and Vinc124 can be successfully used for estimating the intra- and interspecific polymorphism of the species of genus Vincetoxicum Wolf in Ukraine.  相似文献   

10.
The variability of the microbial population structure of the gut of omnivorous wireworms Agriotes obscurus (L) and Selatosomus aeneus (L) was studied. The limits of intra- and interspecific and intersite variation were determined. The stability of the microbial composition of the gut allows us to reveal the list of obligate saprotrophs (with 95% probability) using only five replications. In the case of S. aeneus, the influence of starvation and diet change was studied. Starvation changed the microbial population structure, while the diet did not. The results confirm that omnivorous wireworms have a stable gut microbial population, which suggests an advanced mutualistic relationship between wireworms and their gut bacteria, possibly assisting in digestion and providing for ecological flexibility of wireworms.  相似文献   

11.
For species to persist on floodplains and in temporary wetlands in arid climates, where large and unpredictable water level fluctuations are common, at least one life history stage must be able to survive inundation. We investigated the survival and performance (RGR, total biomass and above-to-belowground biomass (A:B)) of three common and often coexisting arid zone floodplain species: Xanthium strumarium, Cyperus gymnocaulos and Ludwigia peploides. Observations suggested the species had different responses to inundation, which was tested in a controlled pond experiment. Plants were held at three elevations (+ 10 cm, ? 20 and ? 70 cm) and subjected to three hydrological regimes (static 90 cm, 1 and 5 cm day?1 inundation) for 16 weeks. Xanthium strumarium died when completely inundated for longer than 4 weeks but when partially flooded survived, showed lower growth rates, increased A:B and produced adventitious roots. C. gymnocaulos showed reduced growth rates when partially flooded and senesced to rhizomes when completely inundated for longer than 4 weeks, which re-sprouted after inundation pressure was removed. L. peploides responded positively to flooding with increased A:B and the production of adventitious roots. The species exhibited three contrasting responses to inundation, which do not necessarily fit neatly within existing water regime functional classification frameworks.  相似文献   

12.
RAPD analysis was used to study the intraspecific variation and phylogenetic relationships of Sgenome diploid Aegilops species regarded as potential donors of the B genome of cultivated wheat. In total, 21 DNA specimens from six S-genome diploid species were examined. On a dendrogram, Ae. speltoides and Ae. aucheri formed the most isolated cluster. Among the other species, Ae. searsii was the most distant while Ae. longissima and Ae. sharonensis were the closest species. The maximum difference between individual accessions within one species was approximately the same (0.18–0.22) in Ae. bicornis, Ae. longissima, Ae. sharonensis, and Ae. searsii. The difference between the clusters of questionable species Ae. speltoides and Ae. aucheri corresponded to the intraspecific level; the difference between closely related Ae. longissima and Ae. sharonensis corresponded to the interspecific level.  相似文献   

13.

Key message

Assessment of chromosomal distribution of modified histones and 5-methylcytosine shown that there are diversification of chromosomal types among species of Brachiaria and its interspecific hybrids.

Abstract

Histone post-translational modifications and DNA methylation are epigenetic processes that are involved in structural and functional organization of the genome. This study compared the chromosomal distribution of modified histones and 5-methylcytosine (5-mCyt) in species and interspecific hybrids of Brachiaria with different ploidy levels and reproduction modes. The relation between H3K9me2 and 5-mCyt was observed in the nucleolus organizer region, centromeric central domain and pericentromeric region. H3K4me2 was detected in euchromatic domains, mainly in the terminal chromosomal regions. Comparison of chromosomal distribution among species and hybrids showed greater variation of chromosomal types for the H3K9me2 in B. decumbens (tetraploid and apomictic species) and the 963 hybrid, while, for the H3K4me2, the variation was higher in B. brizantha and B. decumbens (tetraploid and apomictic species) and 963 hybrid. The chromosome distribution of 5-mCyt was similar between B. brizantha and B. decumbens, which differ from the distribution observed in B. ruziziensis (diploid and sexual species). Significant alterations in DNA methylation were observed in the artificially tetraploidized B. ruziziensis and in the interspecific hybrids, possibly as result of hybridization and polyploidization processes. The monitoring of histone modifications and DNA methylation allowed categorizing nuclear and chromosomal distribution of these epigenetic marks, thus contributing to the knowledge of composition and structure of the genome/epigenome of Brachiaria species and hybrids. These data can be useful for speciation and genome evolution studies in genus Brachiaria, and represent important markers to explore relationships between genomes.
  相似文献   

14.
Monodominant forests are characterized by the strong influence of a single species on the structure and diversity of the community. In the tropics, monodominant forests are rare exceptions within the generally highly diverse tropical forest biome. Some studies have shown that tree monodominance may be a transient state caused by successional and demographic variation among species over time. Working in a Brosimum rubescens Taub. (Moraceae) monodominant forest at the southern edge of Amazonia, we tested the hypotheses that local-scale variation in intra- and interspecific spatial patterns of dominant tree species is affected by i) demographic rates of recruitment and mortality following severe droughts, ii) local variation in edaphic properties, and iii) occupation of species in the vertical layer of the forest. We quantified intra- and interspecific spatial patterns and edaphic associations of the five most abundant species using aggregation and association distance indices, and examined changes over time. We found some support for all hypotheses. Thus, intra- and interspecific spatial patterns of most species varied over time, principally after severe drought, emphasizing species-level variability and their interactions in sensitivity to this disturbance, even as B. rubescens monodominance was maintained. While positive and negative spatial associations with edaphic properties provide evidence of habitat specialization, the absence of negative spatial associations of B. rubescens with edaphic properties indicates that this species experiences little environmental restriction, and this may be one of the factors that explain its monodominance. Spatial repulsion and attraction between species in the same and in different vertical layers, respectively, indicates niche overlap and differentiation, while changes over time indicate that the relationships between species are dynamic and affected by drought disturbance.  相似文献   

15.
We conducted a cytogenetic study of four hyline frog species (Dendropsophus elegans, D. microps, D. minutus and D. werneri) from southern Brazil. All species had 2n = 30 chromosomes, with interspecific and intraspecific variation in the numbers of metacentric, submetacentric, subtelocentric and telocentric chromosomes. C-banding and fluorochrome staining revealed conservative GC-rich heterochromatin localized in the pericentromeric regions of all species. The location of the nucleolus organizer regions, as confirmed by fluorescent in situ hybridization, differed between species. Telomeric probes detected sites that were restricted to the terminal regions of all chromosomes and no interstitial or centromeric signals were observed. Our study corroborates the generic synapomorphy of 2n = 30 chromosomes for Dendropsophus and adds data that may become useful for future taxonomic revisions and a broader understanding of chromosomal evolution among hylids.  相似文献   

16.
17.
Passive acoustic monitoring (PAM) of fish sounds has been used as a means of detecting the presence and abundance of fishes. Prior to PAM, bioacoustical analyses of sounds are needed to characterize species-specific characteristics of calls. With hydrophones placed in outdoor ponds, we recorded the mating calls of three species of prochilodontid fishes (Prochilodus argenteus, P. costatus, P. lineatus). Fish were induced to spawn and call by injection of carp (Cyprinus carpio) pituitary gland extract. We recorded a total of 394 pulse train calls and additional single pulse calls that were not associated with trains. The trains of all three species were similar in nature - series of low frequency pulses that lasted from 1 to 11 s, often with an initial rapid rise followed by a slow tapering of pulse amplitude. Dominant frequency of single pulses and trains was greatest in P. lineatus, with P. costatus and P. argenteus exhibiting lower single pulse dominant frequencies, and P. costatus having lower train dominant frequency. With data from the three species combined, the dominant frequency of pulses significantly increased with fish standard length. There was also a significant linear relationship between the dominant frequency of pulses and trains. Discriminant function analysis showed that differences in train dominant frequency, pulse duration, and pulse period between the three species were significant enough to discriminate between them. This study was the first to fully characterize the sounds of these three Prochilodus species, and should assist fisheries biologists monitoring spawning behavior in these species.  相似文献   

18.
Species morphological changes can be mutually influenced by environmental or biotic factors, such as competition. South American canids represent a quite recent radiation of taxa that evolved forms very disparate in phenotype, ecology and behaviour. Today, in the central part of South America there is one dominant large species (the maned wolf, Chrysocyon brachyurus) that directly influence sympatric smaller taxa via interspecific killing. Further south, three species of similar sized foxes (Lycalopex spp.) share the same habitats. Such unique combination of taxa and geographic distribution makes South American dogs an ideal group to test for the simultaneous impact of climate and competition on phenotypic variation. Using geometric morphometrics, we quantified skull size and shape of 431 specimens belonging to the eight extant South American canid species: Atelocynus microtis, Cerdocyon thous, Ch. brachyurus, Lycalopex culpaeus, L. griseus, L. gymnocercus, L. vetulus and Speothos venaticus. South American canids are significantly different in both skull size and shape. The hypercarnivorous bush dog is mostly distinct in shape from all the other taxa while a degree of overlap in shape—but not size—occurs between species of the genus Lycalopex. Both climate and competition impacts interspecific morphological variation. We identified climatic adaptations as the main driving force of diversification for the South American canids. Competition has a lower degree of impact on their skull morphology although it might have played a role in the past, when canid community was richer in morphotypes.  相似文献   

19.
Woody plant demographics provide important insight into ecosystem state-shifts in response to changing fire regimes. In Australian tropical savannas, the switch from patchy landscape burning by Aborigines to unmanaged wildfires within the past century has been implicated in biodiversity declines including the fire-sensitive conifer, Callitris intratropica. C. intratropica commonly forms small, closed-canopy groves that exclude fire and allow recruitment of conspecifics and other fire-sensitive woody plants. C. intratropica groves provide a useful indicator of heterogeneity and fire regime change, but the mechanisms driving the species’ persistence and decline remain poorly understood. We examined the hypothesis that C. intratropica population stability depends upon a regime of frequent, low-intensity fires maintained by Aboriginal management. We combined integral projection models of C. intratropica population behaviour with an environmental state change matrix to examine how vital rates, grove dynamics and the frequency of high- and low-intensity fires contribute to population stability. Closed-canopy C. intratropica groves contributed disproportionately to population growth by promoting recruitment, whereas singleton trees accounted for a larger proportion of adult mortality. Our patch-based population model predicted population declines under current fire frequencies and that the recruitment of new groves plays a critical role in the species’ persistence. Our results also indicated that reducing fire intensity, a key outcome of Aboriginal burning, leads to C. intratropica population persistence even at high fire frequencies. These findings provide insight into the relationship between ecosystem composition and human–fire interactions and the role of fire management in sustaining the mosaics that comprise ‘natural’ systems.  相似文献   

20.

Background and aims

Intraspecific aggregation of plant individuals can promote species coexistence by delaying competitive exclusions. However, such impacts may differ among species with contrasting spatial architecture and rely on the spatial distribution of resources.

Methods

We grew a phalanx clonal plant Carex neurocarpa (with aggregated ramets) and a guerilla one Bolboschoenus planiculmis (with diffused ramets) in monocultures or in 1:1 mixtures with an even or a clustered distribution pattern of the two species in homogeneous or heterogeneous soils.

Results

After 16 months, shoot biomass and ramet number were greater in mixtures than in monocultures in C. neurocarpa, but smaller in B. planiculmis. However, the growth of neither C. neurocarpa nor B. planiculmis differed between even and clustered mixtures. Soil nutrient heterogeneity did not significantly affect the growth of either species, but increased relative yield of B. planiculmis and decreased that of C. neurocarpa.

Conclusions

The relative importance of intra- vs. interspecific competition depends on the spatial architecture of plants, and soil nutrient heterogeneity slows down competitive exclusion by decreasing differences in competitive ability between plants. However, our results do not support the idea that intraspecific aggregation of individuals alters competitive interactions between species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号