共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to powdery mildew infection, enhanced senescence, and enhanced programmed cell death under both abiotic and biotic stress conditions. All edr1-mediated phenotypes can be suppressed by a specific missense mutation (keg-4) in the KEEP ON GOING (KEG) gene, which encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like (for HECT and RCC1-like) repeats. The molecular and cellular mechanisms underlying this suppression are poorly understood. Using confocal laser scanning microscopy and fluorescent protein fusions, we determined that KEG localizes to trans-Golgi network/early endosome (TGN/EE) vesicles. Both the keg-4 mutation, which is located in the carboxyl-terminal HERC2-like repeats, and deletion of the entire HERC2-like repeats reduced endosomal localization of KEG and increased localization to the endoplasmic reticulum and cytosol, indicating that the HERC2-like repeats facilitate the TGN/EE targeting of KEG. EDR1 colocalized with KEG to the TGN/EE when coexpressed but localized primarily to the endoplasmic reticulum when expressed alone. Yeast two-hybrid and coimmunoprecipitation analyses revealed that EDR1 and KEG physically interact. Deletion of the HERC2-like repeats abolished the interaction between KEG and EDR1 as well as the KEG-induced TGN/EE localization of EDR1, indicating that the recruitment of EDR1 to the TGN/EE is based on a direct interaction between EDR1 and KEG mediated by the HERC2-like repeats. Collectively, these data suggest that EDR1 and KEG function together to regulate endocytic trafficking and/or the formation of signaling complexes on TGN/EE vesicles during stress responses. 相似文献
2.
SMAP2, a novel ARF GTPase-activating protein, interacts with clathrin and clathrin assembly protein and functions on the AP-1-positive early endosome/trans-Golgi network 下载免费PDF全文
Natsume W Tanabe K Kon S Yoshida N Watanabe T Torii T Satake M 《Molecular biology of the cell》2006,17(6):2592-2603
We recently reported that SMAP1, a GTPase-activating protein (GAP) for Arf6, directly interacts with clathrin and regulates the clathrin-dependent endocytosis of transferrin receptors from the plasma membrane. Here, we identified a SMAP1 homologue that we named SMAP2. Like SMAP1, SMAP2 exhibits GAP activity and interacts with clathrin heavy chain (CHC). Furthermore, we show that SMAP2 interacts with the clathrin assembly protein CALM. Unlike SMAP1, however, SMAP2 appears to be a regulator of Arf1 in vivo, because cells transfected with a GAP-negative SMAP2 mutant were resistant to brefeldin A. SMAP2 colocalized with the adaptor proteins for clathrin AP-1 and EpsinR on the early endosomes/trans-Golgi-network (TGN). Moreover, overexpression of SMAP2 delayed the accumulation of TGN38/46 molecule on the TGN. This suggests that SMAP2 functions in the retrograde, early endosome-to-TGN pathway in a clathrin- and AP-1-dependent manner. Thus, the SMAP gene family constitutes an important ArfGAP subfamily, with each SMAP member exerting both common and distinct functions in vesicle trafficking. 相似文献
3.
4.
Participation of the syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the trans-Golgi network 下载免费PDF全文
Tai G Lu L Wang TL Tang BL Goud B Johannes L Hong W 《Molecular biology of the cell》2004,15(9):4011-4022
An in vitro transport assay, established with a modified Shiga toxin B subunit (STxB) as a marker, has proved to be useful for the study of transport from the early/recycling endosome (EE/RE) to the trans-Golgi network (TGN). Here, we modified this assay to test antibodies to all known soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that have been shown to localize in the Golgi and found that syntaxin 5, GS28, Ykt6, and GS15 antibodies specifically inhibited STxB transport. Because syntaxin 5, GS28, Ykt6, and GS15 exist as a unique SNARE complex, our observation indicates that these four SNAREs function as a complex in EE/RE-TGN transport. The importance of GS15 in EE/RE-TGN transport was further demonstrated by a block in recombinant STxB transport in HeLa cells when GS15 expression was knocked down by its small interfering iRNA. Morphological analyses showed that some GS15 and Ykt6 were redistributed from the Golgi to the endosomes when the recycling endosome was perturbed by SNX3-overexpression, suggesting that GS15 and Ykt6 might cycle between the endosomes and the Golgi apparatus. Further studies indicated that syntaxin 5 and syntaxin 16 exerted their role in EE/RE-TGN transport in an additive manner. The kinetics of inhibition exhibited by syntaxin 16 and syntaxin 5 antibodies is similar. 相似文献
5.
Soi3p/Rav1p functions at the early endosome to regulate endocytic trafficking to the vacuole and localization of trans-Golgi network transmembrane proteins 下载免费PDF全文
Sipos G Brickner JH Brace EJ Chen L Rambourg A Kepes F Fuller RS 《Molecular biology of the cell》2004,15(7):3196-3209
SOI3 was identified by a mutation, soi3-1, that suppressed a mutant trans-Golgi network (TGN) localization signal in the Kex2p cytosolic tail. SOI3, identical to RAV1, encodes a protein important for regulated assembly of vacuolar ATPase. Here, we show that Soi3/Rav1p is required for transport between the early endosome and the late endosome/prevacuolar compartment (PVC). By electron microscopy, soi3-1 mutants massively accumulated structures that resembled early endosomes. soi3Delta mutants exhibited a kinetic delay in transfer of the endocytic tracer dye FM4-64, from the 14 degrees C endocytic intermediate to the vacuole. The soi3Delta mutation delayed vacuolar degradation but not internalization of the a-factor receptor Ste3p. By density gradient fractionation, Soi3/Rav1p associated as a peripheral protein with membranes of a density characteristic of early endosomes. The soi3 null mutation markedly reduced the rate of Kex2p transport from the TGN to the PVC but had no effect on vacuolar protein sorting or cycling of Vps10p. These results suggest that assembly of vacuolar ATPase at the early endosome is required for transport of both Ste3p and Kex2p from the early endosome to the PVC and support a model in which cycling through the early endosome is part of the normal itinerary of Kex2p and other TGN-resident proteins. 相似文献
6.
Integrins are type I heterodimeric (alpha/beta) cell adhesion molecules. They trigger cell-signaling by recruiting cytosolic molecules to their cytoplasmic tails. Integrin alpha cytoplasmic tail contributes towards integrin function specificity, an important feature of integrins having different alpha subunits but sharing the same beta subunit. Herein, we show that the src family kinase Hck co-capped selectively with leukocyte integrin alpha(M)beta(2) but not alpha(L)beta(2) or alpha(X)beta(2). This was disrupted when the alpha(M) cytoplasmic tail was substituted with that of alpha(L) or alpha(X). Co-capping was recovered by alpha(L) or alpha(X) cytoplasmic tail truncation or forced separation of the alpha and beta cytoplasmic tails via salt-bridge disruption. 相似文献
7.
A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome 下载免费PDF全文
Hirst J Lui WW Bright NA Totty N Seaman MN Robinson MS 《The Journal of cell biology》2000,149(1):67-80
We have cloned and characterized members of a novel family of proteins, the GGAs. These proteins contain an NH(2)-terminal VHS domain, one or two coiled-coil domains, and a COOH-terminal domain homologous to the COOH-terminal "ear" domain of gamma-adaptin. However, unlike gamma-adaptin, the GGAs are not associated with clathrin-coated vesicles or with any of the components of the AP-1 complex. GGA1 and GGA2 are also not associated with each other, although they colocalize on perinuclear membranes. Immunogold EM shows that these membranes correspond to trans elements of the Golgi stack and the TGN. GST pulldown experiments indicate that the GGA COOH-terminal domains bind to a subset of the proteins that bind to the gamma-adaptin COOH-terminal domain. In yeast there are two GGA genes. Deleting both of these genes results in missorting of the vacuolar enzyme carboxypeptidase Y, and the cells also have a defective vacuolar morphology phenotype. These results indicate that the function of the GGAs is to facilitate the trafficking of proteins between the TGN and the vacuole, or its mammalian equivalent, the lysosome. 相似文献
8.
P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes 总被引:1,自引:0,他引:1
Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Delta cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN. 相似文献
9.
Reddy RC Chen GH Tateda K Tsai WC Phare SM Mancuso P Peters-Golden M Standiford TJ 《American journal of physiology. Lung cellular and molecular physiology》2001,281(3):L537-L543
Prostaglandins of the E series are believed to act as important mediators of several pathophysiological events that occur in sepsis. Studies were performed to evaluate the effect of cyclooxygenase (COX)-2-specific inhibition on the outcome in murine endotoxemia and cecal ligation and puncture (CLP). We observed a significant time-dependent upregulation of PGE(2) production in both blood and lung homogenates of mice administered lipopolysaccharide intraperitoneally, which was nearly completely suppressed by the administration of the COX-2 inhibitor NS-398. Treatment with NS-398 significantly improved early but not late survival in lipopolysaccharide-challenged mice. On the contrary, elevated PGE(2) levels were found in bronchoalveolar lavage fluid but not in plasma of mice subjected to CLP (21 gauge). Pretreatment with NS-398 failed to significantly improve survival in CLP mice. No significant differences were noted in plasma or lung homogenate proinflammatory cytokine levels or lung neutrophil sequestration between the NS-398-treated and control groups. These results demonstrate that selective COX-2 inhibition confers early but not long-term benefits without affecting the expression of proinflammatory cytokines or the development of lung inflammation. 相似文献
10.
Reduction of alpha-Gal expression by relocalizing alpha-galactosidase to the trans-Golgi network and cell surface 总被引:1,自引:0,他引:1
Historically, the most effective means of modifying cell surface carbohydrates has required the intracellular overexpression of glycosyltransferases or glycosidases and is dependent on the enzymes occupying a cellular localization close to the carbohydrate structures they modify. We report on relocalizing the lysosomal resident glycosidase human alpha-galactosidase to other regions of the cell, Golgi and cell surface, where it is in closer proximity for cleaving the carbohydrate structure Galalpha(1,3)Gal. Relocalization of alpha-galactosidase was achieved by using the transmembrane and cytoplasmic domains from the human protein furin, which is known to localize in the trans-Golgi network (TGN) and cell surface. Two chimeric forms of alpha-galactosidase were generated, one directing it to the TGN of the cell and the other to the cell surface, as shown by confocal microscopy. The relocalized enzymes have the ability to cleave terminal alpha-galactose as detected by expression on the cell surface. Furthermore, when expressed as a transgene in mice, the TGN form of alpha-galactosidase was more effective at decreasing cell surface terminal alpha-galactose than was the native lysosomal form. When expressed in conjunction with the alpha1,2fucosyltransferase that also decreases Galalpha(1,3)Gal, the reduction was additive. The ability to relocalize enzymes that modify cell surface carbohydrate structures has far-reaching implications in biology and may be useful in such fields as xenotransplantation and treatment of glycosidase disorders. 相似文献
11.
A carboxy-terminal epitope tag introduced into the coding region of the A/WSN/33 M2 protein resulted in a recombinant virus (rWSN M2myc) which replicated to titers similar to those of the parental virus (rWSN) in MDCK cells. The rWSN M2myc virus was attenuated in its ability to induce mortality and weight loss after the intranasal inoculation of BALB/c mice, indicating that the M2 cytoplasmic tail plays a role in virus virulence. Mice infected with rWSN M2myc were completely protected from subsequent challenge with rWSN, suggesting that epitope tagging of the M2 protein may be a useful way of attenuating influenza A virus strains. 相似文献
12.
Mei Hong William F. DeGrado 《Protein science : a publication of the Protein Society》2012,21(11):1620-1633
The influenza M2 protein forms an acid‐activated and drug‐sensitive proton channel in the virus envelope that is important for the virus lifecycle. The functional properties and high‐resolution structures of this proton channel have been extensively studied to understand the mechanisms of proton conduction and drug inhibition. We review biochemical and electrophysiological studies of M2 and discuss how high‐resolution structures have transformed our understanding of this proton channel. Comparison of structures obtained in different membrane‐mimetic solvents and under different pH using X‐ray crystallography, solution NMR, and solid‐state NMR spectroscopy revealed how the M2 structure depends on the environment and showed that the pharmacologically relevant drug‐binding site lies in the transmembrane (TM) pore. Competing models of proton conduction have been evaluated using biochemical experiments, high‐resolution structural methods, and computational modeling. These results are converging to a model in which a histidine residue in the TM domain mediates proton relay with water, aided by microsecond conformational dynamics of the imidazole ring. These mechanistic insights are guiding the design of new inhibitors that target drug‐resistant M2 variants and may be relevant for other proton channels. 相似文献
13.
Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). 总被引:41,自引:0,他引:41 下载免费PDF全文
J P Luzio B Brake G Banting K E Howell P Braghetta K K Stanley 《The Biochemical journal》1990,270(1):97-102
Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network. 相似文献
14.
van der Poel S Wolthoorn J van den Heuvel D Egmond M Groux-Degroote S Neumann S Gerritsen H van Meer G Sprong H 《Traffic (Copenhagen, Denmark)》2011,12(11):1634-1647
Sphingolipids are considered to play a key role in protein sorting and membrane trafficking. In melanocytic cells, sorting of lysosomal and melanosomal proteins requires the sphingolipid glucosylceramide (GlcCer). This sorting information is located in the lumenal domain of melanosomal proteins. We found that two processes dependent on lumenal pH, protein sialylation and lysosomal acid lipase (LAL) activity were aberrant in GM95 melanocyte cells, which do not produce glycosphingolipids. Using fluorescence lifetime imaging microscopy (FLIM), we found that the lumenal pH in the trans-Golgi network and lysosomes of wild-type melanocyte MEB4 cells are >1 pH unit lower than GM95 cells and fibroblasts. In addition to the lower pH found in vivo, the in vitro activity of the proton pump, the vacuolar-type H(+) -translocating ATPase (V-ATPase), was twofold higher in MEB4 compared to GM95 cells. The apparent K(i) for inhibition of the V-ATPase by concanamycin A and archazolid A, which share a common binding site on the c-ring, was lower in glycosphingolipid-deficient GM95 cells. No difference between the MEB4 and GM95 cells was found for the V-ATPase inhibitors apicularen A and salicylihalimide. We conclude that hyperacidification in MEB4 cells requires glycosphingolipids and propose that low pH is necessary for protein sorting and melanosome biogenesis. Furthermore, we suggest that glycosphingolipids are indirectly involved in protein sorting and melanosome biogenesis by stimulating the proton pump, possibly through binding of GlcCer. These experiments establish, for the first time, a link between pH, glycosphingolipids and melanosome biogenesis in melanocytic MEB4 cells, to suggest a role for glycosphingolipids in hyperacidification in melanocytes. 相似文献
15.
Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition 总被引:6,自引:0,他引:6 下载免费PDF全文
The p53-MDM2 feedback loop is vital for cell growth control and is subjected to multiple regulations in response to various stress signals. Here we report another regulator of this loop. Using an immunoaffinity method, we purified an MDM2-associated protein complex that contains the ribosomal protein L23. L23 interacted with MDM2, forming a complex independent of the 80S ribosome and polysome. The interaction of L23 with MDM2 was enhanced by treatment with actinomycin D but not by gamma-irradiation, leading to p53 activation. This activation was inhibited by small interfering RNA against L23. Ectopic expression of L23 reduced MDM2-mediated p53 ubiquitination and also induced p53 activity and G(1) arrest in p53-proficient U2OS cells but not in p53-deficient Saos-2 cells. These results reveal that L23 is another regulator of the p53-MDM2 feedback regulation. 相似文献
16.
Selective inhibition of high- but not low-affinity interleukin 2 binding by lectins and anti-interleukin 2 receptor alpha antibody 总被引:1,自引:0,他引:1
The present study demonstrated that various reagents can specifically reduce the affinity of high-affinity interleukin 2 receptor (IL-2R) but not that of low-affinity IL-2R. They included lectins such as wheat germ agglutinin (WGA), concanavalin A and phytohemagglutinin, and a chemical cross-linker, glutaraldehyde, in addition to anti-IL-2R monoclonal antibodies, HIEI and H-47. The affinity of the high-affinity IL-2R was reduced when the cells were treated with WGA or H-47 before, but not after, addition of 125I-labeled interleukin 2 (IL-2). Their inhibitory effects were also demonstrated by the chemical cross-linking method. On treatment with the reagents, the IL-2 binding to both IL-2R alpha and beta chains was inhibited and these inhibitory effects were seen only when the reagents were added before IL-2 addition, like their high-affinity reducing effects. These results support a supposition that the high affinity IL-2R is generated by assembly of the alpha and beta chains, and suggest that the IL-2 binding to IL-2R alpha and beta chains could induce stable constitution of the high-affinity state of IL-2R, but these affinity modulating reagents could perturb the optimum association between alpha and beta chains to generate the high-affinity IL-2R. 相似文献
17.
Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. 总被引:4,自引:5,他引:4 下载免费PDF全文
Influenza virus enters its host cell by receptor-mediated endocytosis followed by acid-activated membrane fusion in endosomes. The viral ribonucleoprotein particles (vRNPs) delivered into the cytosol then dissociate from the matrix protein, M1, and from each other, after which they are individually imported into the nucleus via the nuclear pores. For some time, it has been believed that the low pH in endosomes may, in some way, trigger the capsid disassembly events necessary for nuclear transport. This report provides direct evidence that the association of M1 with vRNPs is sensitive to mildly acidic pH within the infected cell. Recombinant M1, expressed in cultured cells, was found to associate with vRNPs and inhibit their nuclear import. Brief acidification of the cytosolic compartment eliminated the interfering activity and allowed the incoming vRNPs to enter the nucleus. Newly assembled progeny M1-vRNP complexes in the cytosol of infected cells were also dissociated by brief acidification. Acidic pH was thus found to serve as a switch that allowed M1 to carry out its multiple functions in the uncoating, nuclear transport, and assembly of vRNPs. 相似文献
18.
Interleukin-8 (IL-8) belongs to the CXC chemokine family. IL-8 exerts its biological activities by binding to specific cell surface receptors, CXCR-1 and CXCR-2. Both receptors bind IL-8 with high affinity but they have different affinities for MGSA/Groalpha and NAP-2. It has been shown that the expression of epidermal CXCR-2 is increased in psoriasis, suggesting that activation of KC mediated by CXCR-2 contributes to the characteristic epidermal changes observed in psoriasis. In order to examine the mechanism(s) by which UVB therapy is effective for several dermatoses including psoriasis, we sought to examine if UVB would modulate the expression of CXCR-1 and CXCR-2 in human keratinocytes (KC). Constitutive expression of CXCR-1 and CXCR-2 mRNA was detected by RT-PCR in normal cultured human KC. After 100 or 300 J/m(2) irradiation, a decrease in CXCR-2 mRNA was detectable from 12 h after irradiation; this downregulation was observed until 48 h after irradiation. In contrast, the CXCR-1 mRNA level was unchanged. Immunohistochemical studies and flow cytometry analysis confirmed the suppressive effect of UVB on the expression of CXCR-2 protein in cultured human keratinocytes. Immunohistochemical studies on two minimal erythema doses (2MED)-exposed and 2MED-unexposed skin from healthy volunteers revealed that CXCR-2 staining occurred over the whole layer of the epidermis but at 24 h after 2MED irradiation, the positive staining of CXCR-2 was decreased. A faint CXCR-1 staining was observed in the lower part of the epidermis both in unexposed and exposed skins. Our results indicate that UVB-induced growth inhibition of KC in hyperproliferative skin disorders may, in part, be related to downregulation of CXCR-2. 相似文献
19.
20.
The hemagglutinin (HA) of influenza virus organizes the virus bud zone, a domain of the plasma membrane enriched in raft lipids. Using fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET), a technique that detects close colocalization of fluorescent proteins in transfected cells, we show that the viral proton channel M2 clusters with HA but not with a marker for inner leaflet rafts. The FRET signal between M2 and HA depends on the raft-targeting signals in HA and on an intact actin cytoskeleton. We conclude that M2 contains an intrinsic signal that targets the protein to the viral bud zone, which is organized by raft-associated HA and by cortical actin. 相似文献