首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine nuclear transfer embryos reconsitituted from in vitro-matured recipient oocyte cytoplasm and different sources of donor nuclei (in vivo, in vitro-produced or frozen-thawed) were evaluated for their ability to develop in vitro. Their cleavage rate and blastocyst formation are compared with those of control IVF embryos derived from the same batches of in vitro-matured oocytes that were used for nuclear transfer and were co-cultured under the same conditions on bovine oviducal epithelial cell monolayers for 7 d. Using fresh donor morulae as the source of nuclei resulted in 30.2% blastocyst formation (150 497 ), which was similar to that of control IVM-IVF embryos (33.8% blastocysts, 222 657 ). When IVF embryos were used as the source of nuclei for cloning, a slightly lower blastocyst formation rate (22.6%, 41 181 ) was obtained but not significantly different from that using fresh donor morulae. Nuclear transfer embryos derived from vitrified donor embryos showed poor development in vitro (7.1%, 11 154 ). No difference in morphology or cell number was observed after 7 d of co-culture between blastocysts derived from nuclear transfer or control IVF embryos. The viability of 34 in vitro-developed nuclear transfer blastocysts was tested in vivo and resulted in the birth of 11 live calves (32.3%).  相似文献   

2.
There are many factors affecting the efficiency of nuclear transfer technology. Some are evaluated here using our novel approach by enucleating oocytes at 20–22 hr after in vitro maturation (IVM), culturing the enucleated oocytes (cytoplasts) for 8–10 hr or 18–20 hr to gain activation competence and then conducting nuclear transfer. In the first experiment, we demonstrated that cumulus cell (CC) monolayer can support some cloned embryos to develop into morulae or blastocysts. Co-culture with CC and bovine oviduct epithelial cell (BOEC) monolayers resulted in no differences (P 0.05) in supporting the development of cloned embryos (Experiment 2). When in vitro matured oocytes were enucleated at 22 hr after IVM followed by nuclear transfer 18–20 hr later, cleavage and morula or blastocyst development of the cloned embryos were similar to those resulting from the enucleated oocytes which had been matured in vivo (Experiment 3). Frozen embryos as nuclear donor cells worked equally well as fresh embryos for cloning in embryo development which was superior to IVF embryos (Experiment 4). However, fresh embryos resulted in a higher proportion (P < 0.05) of blastomere recovery than did frozen or IVF ambryos. Finally, embryo transfer of cloned embryos from our procedure produced a viable calf, demonstrating the commercial value of this novel approach of the technology. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Bovine oocyte cytoplasm has been shown to support the development of nuclei from other species up to the blastocyst stage. Somatic cell nuclei from buffalo fetal fibroblasts have been successfully reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts. The aim of this study was to compare the in vitro development of fetal and adult buffalo cloned embryos after the fusion of a buffalo fetal fibroblast, cumulus or oviductal cell with bovine oocyte cytoplasm. The fusion of oviductal cells with enucleated bovine oocytes was higher than that of fetal fibroblasts or cumulus cells (83% versus 77 or 73%, respectively). There was a significantly higher cleavage rate (P < 0.05) for fused nuclear transferred embryos produced by fetal fibroblasts and oviductal cells than for cumulus cells (84 or 78% versus 68%, respectively). Blastocyst development in the nuclear transferred embryos produced by fetal fibroblasts was higher (P < 0.05) than those produced either by cumulus or oviductal cells. Chromosome analysis of cloned blastocysts confirmed the embryo was derived from buffalo donor nuclei. This study demonstrates that nuclei from buffalo fetal cells could be successfully reprogrammed to develop to the blastocyst stage at a rate higher than nuclei from adult cells.  相似文献   

4.
Regenerated bovine fetal fibroblast cells were derived from a fetus cloned from an adult cow and passaged every 2-3 days. Serum starvation was performed by culturing cells in DMEM/F-12 supplemented with 0.5% FCS for 1-3 days. In vitro matured bovine oocytes were enucleated by removing the first polar body and a small portion of cytoplasm containing the metaphase II spindle. Cloned embryos were constructed by electrofusion of fetal fibroblast cells with enucleated bovine oocytes, electrically activated followed by 5 h culture in 10 microg/mL cycloheximide + 5 microg/mL cytochalasin B, and then cultured in a B2 + vero-cell co-culture system. A significantly higher proportion of fused embryos developed to blastocysts by day 7 when nuclei were exposed to oocyte cytoplasm prior to activation for 120 min (41.2%) compared to 0-30 min (28.2%, p < 0.01). Grade 1 blastocyst rates were 85.1% and 73.3%, respectively. The mean number of nuclei per grade 1 blastocyst was significantly greater for 120 min exposure (110.63 +/- 7.19) compared to 0-30 min exposure (98.67 +/- 7.94, p < 0.05). No significant differences were observed in both blastocyst development (37.4% and 30.6%) and mean number of nuclei per blastocyst (103.59 +/- 6.6 and 107.00 +/- 7.12) when serum starved or nonstarved donor cells were used for nuclear transfer (p > 0.05). Respectively, 38.7%, 29.4%, and 19.9% of the embryos reconstructed using donor cells at passage 5-10, 11-20 and 21-36 developed to the blastocyst stage. Of total blastocysts, the percentage judged to be grade 1 were 80.9%, 79.2%, and 54.1%, and mean number of nuclei per grade 1 blastocysts, were 113.18 +/- 9.06, 100.04 +/- 6.64, and 89.25 +/- 6.19, respectively. The proportion of blastocyst percentage of grade 1 blastocysts, and mean number of nuclei per grade 1 blastocyst decreased with increasing passage number of donor cells (p < 0.05). These data suggest that regenerated fetal fibroblast cells support high blastocyst development and embryo quality following nuclear transfer. Remodeling and reprogramming of the regenerated fetal fibroblast nuclei may be facilitated by the prolonged exposure of the nuclei to the enucleated oocyte cytoplasm prior to activation. Serum starvation of regenerated fetal cells is not beneficial for embryo development to blastocyst stage. Regenerated fetal fibroblast cells can be maintained up to at least passage 36 and still support development of nuclear transfer embryos to the blastocyst stage.  相似文献   

5.
6.
Oocyte cytoplasm plays a prominent role in cloned embryonic development. To investigate the influence of oocyte cytoplasmic amount on cloned embryo development, we generated bovine somatic cell nuclear transfer (SCNT) embryos containing high (30-40% of the cytoplasm was removed), medium (15-25% of the cytoplasm was removed) and low (<10% of the cytoplasm was removed) nucleocytoplasmic volume ratios (N/C) using enucleated metaphase II oocyte as recipient, and fibroblast as donor nucleus, and analyzed the expression levels of ND1, Cytb and ATPase6, as well as the embryonic quality. The results indicated: (1) the process of embryonic development was not influenced by <40% of cytoplasm removal; (2) the rate of blastocyst formation, the total number of blastomere and the ratio of ICM to TE were inversely proportional to the N/C; (3) SCNT embryos with reduced volume equal to 75-85% or >90% of an intact oocyte volume showed similar karyotype structure of the donor cells; (4) the number of mtDNA copy was larger in low N/C embryos than that in medium or high N/C embryos, and the expression levels of each gene hardly varied from the 2-cell to 8-cell stage, while the expression levels increased dramatically at the blastocyst stage; (5) from 16-cell to the blastocyst stage, the change of the expression level of each gene was not significant between low N/C embryos and IVF embryos, but it was more significant than those of high or medium N/C embryos. The results suggest that the decrease of mtDNA copy number and mitochondrial gene expression may be related to the impairment in early embryonic development, and removal of <10% adjacent cytoplasm volume may be optimal for bovine SCNT embryo development.  相似文献   

7.
Cryopreservation of bovine oocytes would be beneficial both for nuclear transfer and for preservation efforts. The overall objective of this study was to evaluate the viability as well as the cryodamage to the nucleus vs. cytoplasm of bovine oocytes following freezing-thawing of oocytes at immature (GV) and matured (MII) stages using in vitro fertilization (IVF), parthenogenetic activation, or nuclear transfer assays. Oocytes were collected from slaughterhouse ovaries. Oocytes at the GV, MII, or MII but enucleated (MIIe) stages were cryopreserved in 5% (v/v) ethylene glycol; 6% (v/v) 1,2-propanediol; and 0.1-M sucrose in PBS supplemented with 20% (v/v) fetal bovine serum. Frozen-thawed oocytes were subjected to IVF, parthenogenetic activation, or nuclear transfer assays. Significantly fewer GV oocytes survived (i.e., remained morphologically intact during freezing-thawing) than did MII oocytes (47% vs. 84%). Subsequent development of the surviving frozen-thawed GV and MII oocytes was not different (58% and 60% cleavage development; 7% and 12% blastocyst development at Day 9, respectively, P > 0.05). Parthenogenetic activation of frozen-thawed oocytes resulted in significantly lower rates of blastocyst development for the GV than the MII oocyte groups (1% vs. 14%). Nuclear transfer with cytoplasts derived from frozen-thawed GV, MII, MIIe, and fresh-MII control oocytes resulted in 5%, 16%, 14%, and 17% blastocyst development, respectively. However, results of preliminary embryo transfer trials showed that fewer pregnancies were produced from cloned embryos derived from frozen oocytes or cytoplasts (9%, n = 11 embryos) than from fresh ones (19%, n = 21 embryos). Transfer of embryos derived by IVF from cryopreserved GV and MII oocytes also resulted in term development of calves. Our results showed that both GV and MII oocytes could survive freezing and were capable of developing into offspring following IVF or nuclear transfer. However, blastocyst development of frozen-thawed oocytes remains poorer than that of fresh oocytes, and our nuclear transfer assay suggests that this poorer development was likely caused by cryodamage to the oocyte cytoplasm as well as to the nucleus. Mol. Reprod. Dev. 51:281–286, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
A series of experiments were conducted to determine whether bovine blastocysts would develop beyond the blastocyst stage in the ovine uterine environment. In Experiment 1, in vitro matured, fertilized and cultured (IVM/IVF/IVC) expanded bovine blastocysts were transferred into uteri of ewes on Day 7 or 9 of the estrous cycle and collected on Day 14 or 15 to determine if the bovine blastocysts would elongate and form an embryonic disk. Springtime trials with ewes that were synchronized with a medroxyprogesterone acetate (MAP) sponge resulted in a 78% blastocyst recovery rate, and 68% of the recovered spherical or elongated embryos had embryonic disks. In Experiment 2, transfer of 4-cell bovine embryos to the oviducts of ewes at Day 3 resulted in a lower recovery (47 vs 80%) than the transfer of blastocysts at Day 7 when embryos were recovered at Day 14. However, the percentage of embryos containing embryonic disks was higher for embryos transferred at the 4-cell stage (71%) than for embryos transferred as blastocysts (50%). In Experiment 3, IVF embryos from super-ovulated cows or Day 8 in vitro produced embryos transferred to cows were collected at Day 14 and were found to be similar in size to those produced by transfer to ewes in Experiment 2. In Experiment 4, the transfer of bovine blastocysts to ewes did not prolong the ovine estrous cycle. In Experiment 5, extension of the ovine estrous cycle by administration of a MAP releasing intravaginal device allowed bovine embryos to elongate extensively and to become filamentous. In Experiment 6, uterine flushings on Day 14 or Day 16 contained elevated levels of interferon-tau when bovine blastocyst were transferred on Day 7. Transfer of bovine embryos to the reproductive tract of a ewe allows some embryos to develop normally to advanced perimplantation stages and may be a useful tool for studying critical stages of embryo development and the developmental capacity of experimental embryos.  相似文献   

9.
10.
Abortions of nuclear transfer (NT) embryos are mainly due to insufficient placentation. We hypothesized that the primary cause might be the aberrant allocations of two different cell lineages of the blastocyst stage embryos, the inner cell mass (ICM) and the trophectoderm (TE) cells. The potential for development of NT embryos to blastocysts was similar to that for in vitro fertilized (IVF) embryos. No difference in the total cell number was detected between NT and IVF blastocysts, but both types of embryos had fewer total cells than did in vivo-derived embryos (P < 0.05). The NT blastocysts showed a higher ratio of ICM:total cells than did IVF or in vivo-derived embryos (P < 0.05). Individual blastocysts were assigned to four subgroups (I: <20%, II: 20-40%, III: 40-60%, IV: >60%) according to the ratio of ICM:total cells. Most NT blastocysts were placed in groups III and IV, whereas most IVF and in vivo-derived blastocysts were distributed in group II. Our findings suggest that placental abnormalities or early fetal losses in the present cloning system may be due to aberrant allocations of NT embryos to the ICM and TE cells during early development.  相似文献   

11.
This study was designed to examine the developmental ability of porcine embryos after somatic cell nuclear transfer. Porcine fibroblasts were isolated from fetuses at Day 40 of gestation. In vitro-matured porcine oocytes were enucleated and electrically fused with somatic cells. The reconstructed eggs were activated using electrical stimulus and cultured in vitro for 6 days. Nuclear-transferred (NT) embryos activated at a field strength of 120 V/mm (11.6 +/- 1.6%) showed a higher developmental rate as compared to the 150-V/mm group (6.5 +/- 2.3%) (P: < 0.05), but the mean cell numbers of blastocysts were similar between the two groups. Rates of blastocyst development from NT embryos electrically pulsed at different times (2, 4, and 6 h) after electrofusion were 11.6 +/- 2.9, 6.6 +/- 2.3, and 8.1 +/- 3.3%, respectively. The mean cell numbers of blastocysts developed from NT embryos were gradually decreased (30.4 +/- 10.4 > 24.6 +/- 10.1 > 16.5 +/- 7.4 per blastocyst) as exposure time (2, 4, and 6 h) of nuclei to oocyte cytoplast before activation was prolonged. There was a significant difference in the cell number between the 2- and 6-h groups (P: < 0. 05). Nuclear-transferred embryos (9.4 +/- 0.9%) had a lower developmental rate than in vitro fertilization (IVF)-derived (21.4 +/- 1.9%) or parthenogenetic embryos (22.4 +/- 7.2%) (P: < 0.01). The mean cell number (28.9 +/- 11.4) of NT-derived blastocysts was smaller than that (38.6 +/- 10.4) of IVF-derived blastocysts (P: < 0. 05) and was similar to that (29.9 +/- 12.1) of parthenogenetic embryos. Our results suggest that porcine NT eggs using somatic cells after electrical activation have developmental potential to the blastocyst stage, although with smaller cell numbers compared to IVF embryos.  相似文献   

12.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

13.
To evaluate the effect of karyoplast-cytoplast ratio on the development of nuclear transfer embryos, karyoplasts from day 4, day 5, and day 6 embryos were transferred to oocytes enucleated with different volumes of cytoplasm: Type 1, removal of a small volume of cytoplasm equivalent to the first polar body, Type 2, removal of a volume of cytoplasm approximately equal to the volume of the respective karyoplast, and Type 3, removal of half of the oocyte volume. In addition, the effect of experimental reduction of karyoplast cytoplasm was investigated in day 4 and day 5 karyoplasts. Intact day 4 karyoplasts fused to Type 3 cytoplasts did not support development to blastocysts, whereas these karyoplasts yielded blastocysts in combination with Type 1 (7%) and Type 2 cytoplasts (12%). After experimental reduction of cytoplasmic volume in day 4 karyoplasts, blastocysts (10%) were also obtained after fusion with Type 3 cytoplasts, probably due to reduction of cytoplasmic chimerism. With day 5 karyoplasts, blastocyst rate was higher in combination with Type 2 (34%) than with Type 1 (19%) and Type 3 cytoplasts (16%; P < 0.05). The use of day 6 intact karyoplasts resulted in a significantly (P < 0.05) higher proportion of blastocysts when fused with Type 2 (38%) or Type 1 cytoplasts (34%) than with Type 3 cytoplasts (16%). These results suggest that enucleation of oocytes with a volume similar to that of the respective karyoplast creates better conditions for cell cycle interactions with all types of karyoplasts than enucleation with minimal or large volume of cytoplasm. Mol. Reprod. Dev. 48:332–338, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
The aim of this study was to determine the effect of individual oocyte donors on cloned embryo development in vitro. Five Holstein heifers of varied genetic origins were subject to ovum pick up (OPU) once weekly. In total, 913 oocytes were recovered from 1304 follicles. A mean of 7.7+/-0.4 oocytes was recovered per session per animal. Individual mean oocyte production varied significantly in quantity but not in quality (morphological categories) among heifers. Oocytes from individual heifers were used as recipient cytoplasm for somatic cell nuclear transfer (SCNT). Cumulus cells, collected from a single Holstein cow genetically unrelated to the oocyte donor, were used as donor cells. Although the percentage of reconstructed embryos that started to cleave was nearly constant, the percentage of cleaved embryos that developed into blastocysts showed clear individual heifer variation (61%, 51%, 31%, 28% and 24%, respectively), with a mean of 38% showing blastocyst formation. In vitro fertilization (IVF) was also conducted with oocyte from the same heifers used in SCNT. A variation of blastocyst production among individual heifers was also shown in the IVF experiment, but the rank of oocyte donor based on the blastocyst rate was changed. In conclusion, individual oocyte donor may have an effect on cloned embryo development in vitro, which differed from the effect on IVF embryos.  相似文献   

15.
CY Yang  CY Pang  BZ Yang  RC Li  YQ Lu  XW Liang 《Theriogenology》2012,78(7):1437-1445
The objective of this study was to optimize cryopreservation conditions for buffalo in vitro produced (IVP) embryos. The in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) blastocysts were vitrified with either 40% ethylene glycol (EG), 25% EG + 25% dimethylsulfoxide (DMSO), or 20% EG + 20% DMSO + 0.5 m sucrose, and the IVF blastocysts produced from abattoir-derived ovaries were also slow-frozen with either 10% EG or 0.05 m trehalose dehydrate + 1.8% EG + 0.4% BSA. Cryosurvival rates of blastocysts harvested on various days or at various developmental stages were also examined. In this study: (1) vitrification with 20% EG + 20% DMSO + 0.5 m sucrose had the best cryopreservation efficiency; (2) IVF and SCNT blastocysts had similar cryotolerance (P > 0.05); (3) after thawing, slow-frozen blastocysts reexpanded earlier than the vitrified blastocysts (P < 0.01); (4) cryosurvival rate of expanded blastocysts was higher than that of early blastocysts (P < 0.05); (5) cryosurvival rates of Days 5 to 7 blastocysts (Day 0 = day of IVF or SCNT) were higher than those of Days 8 to 9 blastocysts (P < 0.01); and (6) after embryo transfer, pregnancy rates for fresh and cryopreserved blastocysts were not different (P > 0.05). In conclusion, vitrification of Days 6 to 7 expanded blastocysts with 20% EG + 20% DMSO + 0.5 m sucrose was optimal for cryopreservation of buffalo IVP embryos.  相似文献   

16.
This study compared the developmental potential of bovine nuclear transfer embryos with varying amounts of cytoplasm. Embryos formed from single cytoplasts fused to blastomeres by a single electrical pulse or from double cytoplasts using a double electrical pulse resulted in reconstituted embryos containing 75% and 150% of the original oocyte volume. No differences in fusion, cleavage, or development rates to blastocysts were observed between the groups. Mean cell numbers 2 days after fusion were significantly lower in single-cytoplast clones. Cell numbers of resulting blastocysts were likewise significantly lower in single-cytoplast clones. Embryos formed by fusion of blastomeres with single cytoplasts using a single electrical pulse or from double cytoplasts using either a single or a double pulse resulted in reconstituted embryos containing 50%, 100% and 100% of the original oocyte volume. Again, no differences in fusion or cleavage rates were observed between groups, but the development to blastocysts at day 7 was significantly higher in double cytoplasts constructed with one fusion pulse than in single cytoplasts (P< 0.05). Mean cell numbers 2 days after fusion were significantly lower in single-cytoplast clones (P< 0.05), but at the blastocyst stage, no statistically significant differences in cell numbers were observed. The results of this study show that cytoplasmic volume plays a role in the development of nuclear transfer embryos. When using crude enucleation methods such as oocyte bisection, normal cytoplasmic volumes can be achieved by fusing double cytoplasts with embryonic blastomeres. Mol. Reprod. Dev. 50:185–191, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
This study was designed to evaluate the efficacy of Buffalo Rat Liver cells (BRLC) monolayers in supporting the development of in vitro matured and fertilized (IVM/IVF) bovine oocytes through to the hatched blastocyst stage compared to the commonly used co-culture system of bovine oviduct epithelial cells (BOEC). Cumulus oocyte complexes (COCs) obtained from 2- to 6-mm ovarian follicles at slaughter were matured for 24 h in TCM-199 supplemented with FBS and hormones (FSH, LH and estradiol 17-beta). In vitro fertilization (IVF) was performed using 1 x 10(6) percoll separated frozen-thawed spermatozoa in 1 ml of IVF-TL medium containing 18 to 20 matured oocytes. After 20 to 22 h of sperm exposure, 584 presumptive zygotes in 2 separate trials were randomly assigned to 3 treatment groups (BRLC co-culture, BOEC co-culture and control, consisting of medium alone). Zygotes were cultured in CZB media, a simple semi-defined medium, without glucose for the first 2 d, transferred to M199/FBS (TCM-199-HEPES supplemented with 20% HTFBS, 1 mM Sodium pyruvate), and cultured for an additional 8 days. Cleavage and development to morula and various blastocyst stages were recorded between d 3 and 11 after the start of IVF. Overall average cleavage rate was 75% (440 584 ) and did not vary across the treatments or trials. The proportion of embryos that reached the morula stage in both co-culture systems did not differ (P > 0.05) and was significantly higher (P > 0.05) compared to the control group. However, the percentage of the number of blastocysts, expanded blastocysts and hatched blastocysts varied across the treatment groups (P < 0.05), with the highest results obtained in the BRLC co-culture system. The production of blastocysts in BOEC co-culture was inconsistent between the 2 trials where a significant difference (40.6 vs 53.0%; P > 0.05) was observed. Rate of development to the blastocyst stage was similar between the 2 co-culture systems, with most of the embryos reaching the blastocyst stage by d 8 post insemination. The results of this study show that BRLC from a commercially available established cell line offer a more reliable alternative to a BOEC co-culture system for in vitro maturation, fertilization and culture of bovine embryos.  相似文献   

18.
Kim HS  Lee GS  Kim JH  Kang SK  Lee BC  Hwang WS 《Theriogenology》2006,65(4):831-844
The present study investigated the expression of ligand and receptor for leptin, and the effect of leptin supplementation on preimplantation development of porcine in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. The IVF embryos were produced using frozen boar semen and SCNT embryos were obtained by nuclear transfer of fetal fibroblasts into enucleated oocytes. The protein expression of leptin ligand and receptor was investigated in in vitro matured oocytes, 2-, 4- and 8-cell embryos, morulae and blastocysts derived from IVF and SCNT using immunofluorescence. Both the ligand and receptor were detected in in vitro matured oocytes and all stage of IVF and SCNT embryos. The IVF and SCNT embryos were cultured in modified North Carolina State University (mNCSU)-23 medium supplemented with various concentrations (0, 1, 10, 100 or 1000 ng/mL) of leptin. The rates of cleavage at day 2 and blastocyst formation at day 7, and cell number of blastocysts were monitored as experimental parameters. In SCNT embryos, supplementing with 1000 ng/mL leptin significantly (P<0.05) increased the rate of blastocysts formation (20.2% versus 12.9%) and total cell number (54.6+/-17.4 versus 45.1+/-15.2) compared to the control group. In IVF embryos, leptin supplementation did not affect preimplantation embryo development and cell number in blastocysts. In conclusion, the present study demonstrated the expression of leptin ligand and receptor and the embryotropic effect of leptin in SCNT embryos.  相似文献   

19.
Liu Z  Foote RH  Yang X 《Theriogenology》1995,44(5):741-750
Three experiments, utilizing 2578 embryos, were designed to test the effects of media, taurine, Superoxide dismutase and insulin on the development of embryos produced by in vitro maturation and in vitro fertilization (IVM/IVF). Embryos showing at least 1 cleavage during culture for 40 to 44 h after IVM/IVF were selected for further culture under various conditions for 6 d at 39 degrees C in 5% C0(2):95% air. A Buffalo rat liver (BRL) cell co-culture was used in all 3 experiments. Experiment 1 was a 3 x 2 factorial arrangement with KSOM (a high potassium simplex optimization-derived medium containing only 12 ingredients), Menezo B(2) and TCM-199 media with or without 7 mM taurine. Blastocyst production in the 3 media, respectively, was 48, 36 and 29% (P<0.05). Addition of 7 mM taurine increased the percentage of blastocysts from 34 to 42 (P<0.05). In Experiment 2, Superoxide dismutase (SOD) did not improve blastocyst development (P>0.05). In Experiment 3, insulin (75 ng/ml) added to KSOM resulted in 46% morulae plus blastocysts compared with 35% for the control (P<0.05). These results indicate that the co-culture of embryos in KSOM with taurine or insulin added is superior to commonly used complex media for efficient production of blastocysts following IVM/IVF.  相似文献   

20.
Viability of equine embryos produced by oocyte maturation, intracytoplasmic sperm injection and embryo culture to the blastocyst stage in vitro was evaluated after transfer of embryos to recipient mares. No pregnancies were produced after transfer of five blastocysts that had been cultured in G media. Transfer of 10 blastocysts cultured in modified DMEM/F-12 medium produced five pregnancies and three live foals; the two lost pregnancies developed only trophoblast (based on transrectal ultrasonography). To evaluate the status of the inner cell mass, equine blastocysts produced in vivo and in vitro were assessed after differential staining. A discrete inner cell mass could not be appreciated in blastocysts of either source after staining; this was attributed to the presence of a network of cells within the trophoblastic vesicle. Because increased medium calcium concentrations have been reported to decrease the incidence of trophoblast-only pregnancy after transfer of equine nuclear transfer embryos, we investigated the effect of increased calcium concentrations during oocyte maturation or during embryo culture. Increasing calcium concentration of culture medium from 2 to 5.6mM during in vitro oocyte maturation did not affect maturation rate (75 and 68%, respectively) or blastocyst development after fertilization (23 and 27%). However, increasing calcium concentration (from 1.3 to 4.9 mM) of medium used for embryo culture significantly decreased blastocyst development (27% versus 13%, respectively) and adversely affected embryo morphology. More work is needed to optimize culture systems for in vitro production of equine embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号