首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study consists of the development and optimisation of the potassium hydroxide-catalysed synthesis of fatty acid methyl esters (biodiesel) from sunflower oil. A factorial design of experiments and a central composite design have been used. The variables chosen were temperature, initial catalyst concentration by weight of sunflower oil and the methanol:vegetable oil molar ratio, while the responses were biodiesel purity and yield. The initial catalyst concentration is the most important factor, having a positive influence on biodiesel purity, but a negative one on biodiesel yield. Temperature has a significant positive effect on biodiesel purity and a significant negative influence on biodiesel yield. The methanol:vegetable oil molar ratio is only significant for the biodiesel purity, having a positive influence. Second-order models were obtained to predict biodiesel purity and yield as a function of these variables. The best conditions are 25 degrees C, a 1.3%wt for the catalyst concentration and a 6:1 methanol:sunflower oil molar ratio.  相似文献   

2.
Studies were carried out on transesterification of Karanja oil with methanol for the production of biodiesel. The reaction parameters such as catalyst concentration, alcohol/oil molar ratio, temperature, and rate of mixing were optimized for production of Karanja oil methyl ester (KOME). The fatty acid methyl esters content in the reaction mixture were quantified by HPLC and 1H NMR method. The yield of methyl esters from Karanja oil under the optimal condition was 97-98%.  相似文献   

3.
This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751.  相似文献   

4.
Pumice, a natural porous silica material, exchanged with potassium is an efficient heterogeneous particulate catalytic material for triglycerides and free fatty acids transesterification reaction from sunflower oil and waste frying oil at low temperature. In this work, a packed-bed catalytic configuration reactor using this catalytic material was developed for biodiesel fuel production from sunflower oil and frying oil feedstock. Reactor operation variables as methanol/oil molar ratio, catalyst amount, reaction time, and reaction temperature were studied. Results were compared with those obtained from the same transesterification reaction proceeding in a slurry batch reactor. The packed-bed catalytic reactor configuration can be useful in order to minimize catalyst mechanical damage occurring in the slurry reactor due to continuous stirring. The possibility of using a packed-bed reactor shows some advantages because the catalyst stays confined in the reactor bed and the reaction products can be easily separated, besides the mechanical stability of the catalyst particles is achieved.  相似文献   

5.
The aim of this work is to study the transesterification of vegetable oil with a high acid number at unchanged reaction conditions. Rapeseed oil was used as the raw material and its acid number was changed by the addition of oleic acid (from 0.89 to 12.25 mg KOH/g). Methanol was used for transesterification (molar ratio of oil to methanol 1:6) and potassium hydroxide was used as a catalyst. After the reaction time, the residue of the catalyst was neutralised by gaseous carbon dioxide and the methanol excess was removed. After the separation of two phases, each of them was analyzed (in the ester phase: yield, content of methyl ester and acid number; in the glycerol phase: yield, density, viscosity, content of glycerol, soaps, methyl ester, potassium carbonate and hydrogen carbonate). The obtained data was compared with theoretical material balances and the effect on the saponification of oil was discussed. The results show that the yield of methyl ester (biodiesel) is significantly affected by a higher acid number, as well as enhanced soap formation. On the other hand, the conversion of the oil and acid number of the ester phase remain at constant values in studied borders.  相似文献   

6.
In the present study conversion of waste cooking oil to biodiesel has been carried out via simultaneous esterification and transesterification reaction over silica sulfuric acid as a solid acid catalyst. The process variables that influence the fatty acid methyl ester (FAME) conversion, such as reaction temperature, reaction time, catalyst concentration and methanol to oil molar ratio were investigated and optimized using Taguchi method. Highest FAME production obtained under the optimized condition was 98.66 %. Analysis of variance revealed that temperature was the most significant factor effecting the FAME production among four factors studied. From the kinetic study, the reaction was found to follow pseudo first-order kinetics and rate constant of the reaction under optimum condition was 0.00852 min?1.  相似文献   

7.
This work presents biodiesel production from soybean oil and bioethanol by multiple-stage Ultra-Shear reactor (USR). The experiments were carried out in the following conditions: reaction time from 6 to 12 min; catalyst concentration from 0.5% to 1.5% by weight of soybean oil; ethanol: soybean oil molar ratio from 6:1 to 10:1. The experimental design was used to investigate the influence of process variables on the conversion in biodiesel. The best ethyl ester conversion obtained was 99.26 wt.%, with ethanol:soybean oil molar ratio of 6:1, catalyst concentration of 1.35% and with 12 min of reaction time.  相似文献   

8.
In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60 °C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating.  相似文献   

9.
High temperature and pressure are generally required to produce biodiesel using supercritical methanol. We reduced the harsh reaction conditions by means of sonicating the reaction mixture prior to transesterification using supercritical methanol. Soybean oil was selected as the raw material for transesterification. As soybean oil contains more unsaturated fatty acid triglycerides, the biodiesel degraded more at high temperature. The reactants were sonicated for 60 min at 35 °C prior to transesterification to avoid degradation of the product and to enhance biodiesel yield at temperatures <300 °C. The process parameters were optimized using central composite design. The variables selected for optimization were temperature, time, and the oil to methanol molar ratio. The temperature and oil to methanol molar ratios were varied from 250 to 280 °C and 1:40–1:50, respectively. The reaction time was tested between 4 and 12 min. The biodiesel was analyzed for any possible degradation by gas chromatography–mass spectroscopy and for the wt% of fatty acid methyl esters (FAME) obtained. The maximum FAME yield (84.2 wt%) was obtained at a temperature of 265.7 °C, an oil to alcohol molar ratio of 1:44.7, and a time of 8.8 min. The optimum yield was obtained at a pressure of 1,500 psi. The pressure and optimum temperature used to obtain the maximum yield were the lowest reported so far without the use of a co-solvent. Thus, the severity of the supercritical reactions was reduced by adding sonication prior to the reaction.  相似文献   

10.
Biodiesel is increasingly perceived as an important component of solutions to the important current issues of fossil fuel shortages and environmental pollution. Utilization of soluble lipase offers an alternative approach to lipase-catalyzed biodiesel production using immobilized enzyme or whole-cell catalysis. Soluble lipase NS81020, produced by submerged fermentation of genetically modified Aspergillus oryzae microorganism, was first proposed here as the catalyst of biodiesel preparation with oleic acid in the biphasic aqueous-oil systems. The effect factors such as enzyme concentration, water content, temperature, molar ratio of methanol to oil, stirring rate and pH of buffer solution on the esterification rate were investigated systematically. The reaction time could be shortened with the increasing of enzyme concentration as long as the maximum enzyme absorptive capacity on the interface in the biphasic aqueous-oil systems was not achieved. The optimal water content in the biphasic aqueous-oil systems was 10 wt% by oleic acid weight. The reaction rate was enhanced with the increasing molar ratio of methanol to oil, the increasing stirring rate or the decreasing temperature. Although soluble lipase NS81020 had lower activity at pH 10.55, hydroxyl ion conduced to restrain hydrolysis of methyl ester and facilitated the reaction toward the methyl ester formation.  相似文献   

11.
Transesterification of soybean oil catalyzed by combusted oyster shell, which is waste material from shellfish farms, was examined. Powdered oyster shell combusted at a temperature above 700 degrees C, at which point the calcium carbonate of oyster shell transformed to calcium oxide, acted as a catalyst in the transesterification of soybean oil. On the basis of factorial design, the reaction conditions of catalyst concentration and reaction time were optimized in terms of the fatty acid methyl ester concentration expressed as biodiesel purity. Under the optimized reaction conditions of a catalyst concentration and reaction time of 25wt.%. and 5h, respectively, the biodiesel yield, expressed relative to the amount of soybean oil poured into the reaction vial, was more than 70% with high biodiesel purity. These results indicate oyster shell waste combusted at high temperature can be reused in biodiesel production as a catalyst.  相似文献   

12.
The most common catalysts for biodiesel production are homogeneous basic catalysts. In the present paper, a comparison is made of different basic catalysts (sodium methoxide, potassium methoxide, sodium hydroxide and potassium hydroxide) for methanolysis of sunflower oil. All the reactions were carried out under the same experimental conditions in a batch stirred reactor and the subsequent separation and purification stages in a decanter. The analytical methods included gas chromatography and the determination of fat and oil conventional parameters. The biodiesel purity was near 100 wt.% for all catalysts. However, near 100 wt.% biodiesel yields were only obtained with the methoxide catalysts. According to the material balance of the process, yield losses were due to triglyceride saponification and methyl ester dissolution in glycerol. Obtained biodiesel met the measured specifications, except for the iodine value, according to the German and EU draft standards. Although all the transesterification reactions were quite rapid and the biodiesel layers achieved nearly 100% methyl ester concentrations, the reactions using sodium hydroxide turned out the fastest.  相似文献   

13.
The aim of this work was the study of the influence of the raw material composition on biodiesel quality, using a transesterification reaction. Thus, ten refined vegetable oils were transesterificated using potassium methoxide as catalyst and standard reaction conditions (reaction time, 1h; weight of catalyst, 1 wt.% of initial oil weight; molar ratio methanol/oil, 6/1; reaction temperature, 60 degrees C). Biodiesel quality was tested according to the standard [UNE-EN 14214, 2003. Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods]. Some critical parameters like oxidation stability, cetane number, iodine value and cold filter plugging point were correlated with the methyl ester composition of each biodiesel, according to two parameters: degree of unsaturation and long chain saturated factor. Finally, a triangular graph based on the composition in monounsaturated, polyunsaturated and saturated methyl esters was built in order to predict the critical parameters of European standard for whatever biodiesel, known its composition.  相似文献   

14.
Utilizing whole cell biocatalyst instead of free or immobilized enzyme is a potential way to reduce the cost of catalyst in lipase-catalyzed biodiesel production. Rhizopus oryzae (R. oryzae) IFO4697 whole cell immobilized within biomass support particles (BSPs) was used for the methanolysis of soybean oil for biodiesel production in this paper. tert-Butanol was demonstrated to be an ideal reaction medium, in which the negative effects caused by substrate methanol could be eliminated effectively. A central composite design was adopted to study the effect of tert-butanol quantity, methanol quantity, water content and dry biomass of the immobilized cell on biodiesel (methyl ester) yield. Each factor was studied in five levels. Using response surface methodology, a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. Biodiesel yield of 72% could be obtained under the optimal conditions and further verification experiments confirmed the validity of the predicted model.  相似文献   

15.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

16.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

17.
Shi H  Bao Z 《Bioresource technology》2008,99(18):9025-9028
A new method which coupled the two-phase solvent extraction (TSE) with the synthesis of biodiesel was studied. Investigations were carried out on transesterification of methanol with oil-hexane solution coming from TSE process in the presence of sodium hydroxide as the catalyst. Biodiesel (fatty acid methyl esters) were the products of transesterification. The influential factors of transesterification, such as reaction time, catalyst concentration, mole ratio of methanol to oil and reaction temperature were optimized. The results showed that the optimal reaction parameters were sodium hydroxide concentration 1.1% by weight of rapeseed oil, mole ratio of methanol to oil 9:1, reaction time 120 min, and reaction temperature 55-60 degrees C. Under these conditions, the TG conversion would rise up to 98.2%. Based on the new method, biodiesel production process could be simplified and the biodiesel cost could be reduced.  相似文献   

18.
A central composite rotatable design was used to study the effect of methanol quantity, acid concentration and reaction time on the reduction of free fatty acids content of mahua oil during its pretreatment for making biodiesel. All the three variables significantly affected the acid value of the product, methanol being the most effective followed by reaction time and acid catalyst concentration. Using response surface methodology, a quadratic polynomial equation was obtained for acid value by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. The optimum combinations for reducing the acid level of mahua oil to less than 1% after pretreatment was 0.32 v/v methanol-to-oil ratio, 1.24% v/v H2SO4 catalyst and 1.26 h reaction time at 60 degrees C. After the pretreatment of mahua oil, transesterification reaction was carried out with 0.25 v/v methanol-to-oil ratio (6:1 molar ratio) and 0.7% w/v KOH as an alkaline catalyst to produce biodiesel. The fuel properties of mahua biodiesel so obtained complied the requirements of both the American and European standards for biodiesel.  相似文献   

19.
Commercially available steapsin lipase was immobilized on macroporous polymer beads (IB-350) and further investigated for biodiesel production under solvent free conditions. The fatty acid methyl ester (biodiesel) synthesis was carried out by the methanolysis of fresh and used cooking sunflower oil. The enzymatic reaction for biodiesel synthesis was optimized with various reaction parameters and the obtained reaction conditions were 1: 6 molar ratio (oil: methanol), 50 mg biocatalyst and 20% water content at 45°C for 48 h under solvent free conditions. It was observed that 94% of biodiesel was produced under the optimized reaction conditions. The four step addition of methanol at the interval of 12 h was found to be more effective. Moreover the biocatalyst was effectively reused for four consecutive recycles and was appreciably stable for 90 days. The results obtained highlight potential of immobilized steapsin lipase for biodiesel production.  相似文献   

20.
The present work examines the production of a biodiesel from a non-edible oil namely honne oil (Calophyllum inophyllum linn). A three stage process viz., pre-treatment, alkali catalyzed transesterification and post treatment adopted for the production is discussed. The reaction parameters such as methanol to oil molar ratio, catalyst concentration, temperature and time have been optimized for the production of biodiesel. The yield of biodiesel from the honne oil under the optimized conditions is found to be 89%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号