首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

2.
The proliferative activity of pigment epithelium was studied by means of 3H-thymidine autoradiography after the removal of retina, lens and iris with the ciliary-terminal zone in the adults. The cell population of pigment epithelium was shown to be heterogeneous on the level of proliferative activity. A low level of proliferation is characteristic of the cells of epithelial monolayer and the cells leaving it and forming aggregates. An intensive local proliferation leading to the formation of expansions was found in the pigment epithelium layer in 7% of cases. On the 20th day after the operation, the index of labelled nuclei in the expansions amounted to 43.4--59.3% and the mitotic index to 1.4--2.1%. On the 75th day elements of atypical retinal differentiation, besides the high proliferative activity, were observed in one expansion.  相似文献   

3.
The regeneration of a retina in adult Triturus cristatus, following surgical division of the eye by a limbal incision, was studied. In agreement with recent reports, it was found that the regenerating retina is dervied from two sources; the retinal pigment epithelium and the pars ciliaris retinae. However, following a limbal incision, most of the retina appears to be derived from the retinal pigment epithelium in the posterior part of the eye. An unexpected finding of this study was that large cystlike spaces form in the fundal regions of the eye, between the regenerating retina and the retinalpigment epithelium. These spaces appear between five and eight days post-operative and persist long enough (25 to 30 days postoperative) to disrupt the fundal portion of the rengenerating retina and to cause it to lag behind the rest of the regenerate, in its development. The relationship of these observations to the genesis of positional markers in the regenerating retina is discussed.  相似文献   

4.
A study was made of proliferative activity and transdifferentiation of the cells of retinal pigment epithelium (RPE) cultivated in the cavity of the lensectomized eye of adult newt. Implantation of the newt RPE together with vascular membrane and scleral coat resulted in the regeneration of retina. In this process the character of changes in the proliferative activity of RPE and differentiation of retinal cells were the same as in the regeneration of retina in situ. RPE implanted with the vascular membrane alone, despite a high level of proliferation during the first ten days of cultivation, no differentiated retina was formed. Possible causes of these differences are discussed, and the comparison is made of the data obtained with those on RPE cultivation in vitro. After lens removal, with RPE implants present in the eye cavity, in addition to the regenerated lens, 2-3 extra lenses and retina were formed from the cells of the inner layer of the recipient's dorsal iris. Also some cases were revealed of lens formation from the cells of ventral iris. With a complete detachment of the recipient's retina (an after-effect of transplantation) a second differentiated retina regenerated in situ from the recipient's RPE cells.  相似文献   

5.
Expression of fibronectin (Fn) during eye tissue regeneration in the newt after retinal detachment and lens removal was studied by immunohistochemistry. Proliferation of cells involved in eye tissue regeneration was studied using autoradiography. Fn was detected around the cell membranes of undifferentiated proliferating and migrating cells in ciliary body of the iris and growth zone of the retina. Redistribution of Fn was observed in proliferating cells of the dorsal iris participating in lens regeneration. Fn appeared on the apical surface of proliferating redifferentiating pigment epithelium (PE) cells at the periphery of the eye and over the whole surface of proliferating PE cells in the central part of the eye. The Fn level in the Bruch's membrane decreased in the area of transdifferentiating cells detachment from PE layer (in the lower part of the eye) but continued to be stable in the area of PE cell redifferentiation (at the periphery of the eye). The role of Fn is discussed in relation to transdifferentiation, proliferation and migration of cells in the regenerating eye.  相似文献   

6.
The salt extract of the nuclear fraction of a homogenate of the retinal pigment epithelium from 12-15 day old chick embryos inhibits selectively the proliferative activity in the retinal pigment epithelium of 3-5 day old embryos. The inhibiting effect of the nuclear factor is found within 20 h after its introduction into the egg. The nuclear extract from the pigment epithelium does not affect the level of proliferation in retina and lens anterior epithelium.  相似文献   

7.
The proliferative activity of the pigment epithelium cells in the axolotl eyes was studied using 3H-thymidine in two types experiments: after the removal of lens, iris and retina and upon the cultivation of the pigment epithelium pieces in the cavity of lens-less eye. Irrespective of the operation type, the level of proliferation of the pigment epithelium cells changed regularly with respect to the time of observation. In the intact eye, the level of proliferation of the pigment epithelium cells was not high: the index of labelled nuclei equaled 0.5%, no mitoses were found. The highest values of the index of labelled nuclei (12.6-32.1%) and of the mitotic index (0.54-1.07%) were registered on the 10-20th days after the operation. After 40 days, the indices of proliferative activity of the pigment epithelium cells approached gradually those for the intact eye. The cultivation of the pigment epithelium cells in the cavity of a lens-less eye for 50 days did not result in their transdifferentiation into retina cells. The layered retina found in 7.7% of cases after the removal of lens, iris and retina could regenerate either from the cells of the retina growth zone localized in the region of embryonic split, or due to transdifferentiation of the pigment epithelium cells.  相似文献   

8.
The spectrum of LDH isozymes was studied at the successive stages of retinal regeneration from the pigment epithelium and lens cells from the iris margin in the adults Pleurodeles waltlii. The combination of two methods, electrophoresis and immunofluorescence, has revealed the slow and rapid LDH isozymes with different intensity of histochemical staining in cells of the tissues under study (pigment epithelium, retina, iris and lens). During the regeneration the spectra of LDH isozymes peculiar to the pigment epithelium and iris and characterized by the predominance of slow forms were substituted by those peculiar to the retina and iris and characterized by the predominance of rapid forms. The rearrangement is realized in the proliferative phase during the transformation of one cell type into another.  相似文献   

9.
We studied tissue-specific expression of homeobox genes Pax6, Prox1, and Six3 during regeneration of the retina and lens. In the native retina, mRNA of Pax6, Prox1, and Six3 was predominantly localized in ganglion cells and in the inner nuclear layer of the retina. Active Pax6, Prox1, and Six3 expression was detected at early stages of regeneration in all proliferating neuroblasts forming the retinal primordium. Low levels of Pax6, Prox1, and Six3 mRNA were revealed in depigmented cells of the pigment epithelium as compared to the proliferating neuroblasts. At the intermediate stage of retinal regeneration, the distribution of Pax6, Prox1, and Six3 mRNA was diffuse and even all over the primordium. During differentiation of the cellular layers in the course of retinal regeneration, Pax6, Prox1, and Six3 mRNA was predominantly localized in ganglion cells and in the inner part of the inner nuclear layer, which was similar to the native retina. An increased expression was revealed in the peripheral regenerated retina where multipotent cells were localized. The dual role of regulatory genes Pax6, Prox1, and Six3 during regeneration of eye structures has been revealed; these genes controlled cell proliferation and subsequent differentiation of ganglion, amacrine, and horizontal cells. High hybridization signal of all studied genes was revealed in actively proliferating epithelial cells of the native and regenerating lens, while the corneal epithelium demonstrated a lower signal. Pax6 and Prox1 expression was also revealed in single choroid cells of the regenerating eye.  相似文献   

10.
Pathological changes in retinas of diabetics include specific morphological, biochemical, and functional abnormalities. As biochemical manifestations of the disease, increased sorbitol and decreased myo-inositol were found in retinas of experimentally diabetic animals. Similar alterations in polyol metabolism have been associated in nerves of diabetics with a reduction of Na+-K+-ATPase activity. To determine whether this association extends to the retinas of diabetic animals, we applied quantitative histochemical techniques to measure ATPase activities and the amounts of sodium and potassium in samples from nine individual layers of cryostat sections of rabbit retina. ATPase activities were determined fluorimetrically, and the ions were measured by atomic absorption with a carbon rod atomizer. The activity of Na+-K+-ATPase was reduced in the retinal pigmented epithelium (retinal pigment epithelium) and in selected layers of the neural retina, and total sodium in the retinal pigment epithelium layer was elevated in diabetes. The retinal pigment epithelium forms the outer component of the blood-retinal barrier and partly determines the composition of the retinal interstitial fluid. Changes in retinal pigment epithelium biochemistry and function might alter the intraretinal environment, predisposing neural retina or retinal blood vessels to disease. The morphologically and functionally well defined retinal pigment epithelium may provide a useful model for studying the pathogenesis of diabetic complications.  相似文献   

11.
This is a review of the experimental studies on the vertebrate retina neurogenesis. Data are provided on the distribution and localization of multipotent and stem cells in the developing, definitive, and regenerating eye. At the early stages of retina development, the neuroepithelial cells divide synchronously, thus leading to the accumulation of a certain number of the retinal rudiment cells. Synchronous divisions precede the asynchronous ones, when the differentiation of the retinal cells is initiated. The neuroepithelial cells are multipotent: the neuroblast is a source of the cells of different types, for example, neurons and glial cells. The proliferating multipotent cells are preserved in the ciliary-terminal zone of the retina of amphibians, fish, and chickens during their entire life. The differentiated pigment epithelium cells also proliferate in this area of the eye. The multipotent cells of the retinal ciliary-terminal zone and cells of the pigment epithelium in the eye periphery provide for the growth of amphibian and fish eyes during the entire life of these animals. In adult mammals, clonable and self-renewable cells were found among the pigmented differentiated cells in the ciliary folds. In a culture, the stem cells form spheroids consisting of depigmented and proliferating cells. Upon transdifferentiation, the cells of spheroids form rods, bipolar cells, and ganglion and glial cells, thus suggesting the possible regenerative potencies of the stem cells in the ciliary body of the mammalian eye. The main event of retinal regeneration in newts is the transdifferentiation of the pigment epithelium cells. The results of comparative analysis suggest that the stem cells of the ciliary body in the mammalian eye and pigment epithelium cells in lower vertebrates exhibit similar potencies and use similar mechanisms during the formation of the cells of the neural series.  相似文献   

12.
Summary In order to determine if there are biochemical changes in plasma-membrane oligosaccharides of regenerating retinal pigment epithelium, the binding of colloidal iron oxide at low pH and ferritin-conjugated wheat germ agglutinin — probes of sialic acid and N-acetylglucosamine on the cell surface — was examined electron-microscopically. An animal model of retinal pigment epithelium regeneration — rabbits with sodium iodate induced retinopathy — was used. In this model, large expanses of regenerating pigment epithelium are present for comparison with zones of spared pgiment epithelium in the same animals. In thin sections examined by transmission electron microscopy, ferritin-conjugated wheat germ agglutinin appeared to bind more intensely to the exposed plasma membrane of regenerating retinal pigment epithelium than to spared pigment epithelium, or that of normal rabbits. Morphometry verified this. Colloidal iron oxide intensely labelled the plasma membranes of regenerating, spared, and normal pigment epithelium, and was visibly reduced after exposure of tissue to neuraminidase. The observations indicate that the plasma membrane of regenerating retinal pigment epithelium bears sialic acid and N-acetylglucosamine residues as in normal retinal pigment epithelium. However, the amount of plasma membrane bearing exposed N-acetylglucosamine increases during regeneration.  相似文献   

13.
I A Ostapenko 《Tsitologiia》1978,20(6):665-669
Regeneration of rhodopsin has been studied in the eyecup, isolated retina and retinal homogenate of frog Rana temporaia as well as in the eyecup and isolated retina of fish-flounder Limanda aspera (Pallas). Rhodopsin has been found to regenerate only in the eyecup of frog, while isorhodopsin appeared to be the final product in the frog retinal homogenate. Decrease in rhodopsin regeneration level has been resulted from addition of inhibitors--theophyllin (2.10-2 M), papaverine (10-4--10-3 M) and strophantin (2.10-4 M) To the eyecup preparations (60, 20, 23%, consequently). A conclusion is made that structural connection between pigment epithelium cells and photoreceptors is necessary to provide regeneration of native rhodopsin.  相似文献   

14.
In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.  相似文献   

15.
The proliferative activity of the pigment epithelium cells transplanted in the lens-less eyes was studied in the adult crested newt. The cells of transplanted pigment epithelium incorporated 3H-thymidine injected intraperitoneally. Within 10 days after explantation, the index of labelled nuclei equaled 27.8-34.0% and within 20 days the number of labelled cells doubled. By that time the proliferating transplant cells were depigmented and formed 2-3 rows of cells of retinal rudiment. In response to the removal of lens from the of recipients eyes their regeneration proceeded. Irrespective of participation (dorsal iris) or nonparticipation in lens regeneration (ventral iris), the index of labelled nuclei in these regions of iris had similar values. The eyes of recipients were also characterized by a local proliferation of pigment epithelium cells in the zones of retinal detachment. In these zones the index of labelled nuclei in the pigment epithelium equaled 11.0-31.3%.  相似文献   

16.
Summary The sequence of morphological changes in the retinal pigment epithelium during the metamorphic period of the sea lamprey Petromyzon marinus L. has been investigated using electron microscopy. At early metamorphic stages (stages I and II), photoreceptors are present in a small zone of the retina. During these stages, the lateral surface of the epithelial cells shows zonulae occludentes and adhaerentes. The degree of cell differentiation varies throughout the retinal pigment epithelium. Cells covering the differentiated photoreceptors in the central retina have phagosomes, whereas pigment granules appear only in the retinal pigment epithelium dorsal to the optic nerve head. Most epithelial cells have myeloid bodies; their morphology is more complex around the optic nerve head. At stage III, when photoreceptors develop over the whole retina, the distribution of cytoplasmic organelles is almost homogeneous in the retinal pigment epithelium. Subsequently, the basal plasma membrane of the epithelial cells becomes progressively folded and their apical processes enlarged. In addition, extensive gap junctions develop between retinal pigment cells. In late metamorphic stages, noticeable growth of myeloid bodies occurs and consequently the retinal pigment epithelium resembles that of the adult. This study also describes, for the first time, the presence of wandering phagocytes in the retinal pigment epithelium of lampreys; their role in melanosome degradation is discussed.  相似文献   

17.
Summary Myeloid bodies are believed to be differentiated areas of smooth endoplasmic reticulum membranes, and they are found within the retinal pigment epithelium in a number of lower vertebrates. Previous studies demonstrated a correlation between phagocytosis of outer segment disc membranes and myeloid body numbers in the retinal pigment epithelium of the newt. To test the hypothesis that myeloid bodies are directly involved in outer segment lipid metabolism and to further characterize the origin and functional significance of these organelles, we examined the effects on myeloid bodies of eliminating the source of outer segment membrane lipids (neural retina removal) and of the subsequent return of outer segments (retinal regeneration) in the newt Notophthalmus viridescens. Light- and electron-microscopic analysis demonstrated that myeloid bodies disappeared from the pigment epithelium within six days of neural retina removal. By week 6 of regeneration, rudimentary photoreceptor outer segments were present but myeloid bodies were still absent. However, at this time, the smooth endoplasmic reticulum in some areas of the retinal pigment epithelial cells had become flattened, giving rise to small (0.5 m long), two-to-four layer-thick lamellar units, which are myeloid body precursors. Small myeloid bodies were first observed one week later at week 7 of retinal regeneration. This study revealed that newt myeloid bodies are specialized areas of smooth endoplasmic reticulum. It also showed that a contact between functional photoreceptors and the retinal pigment epithelium is essential to the presence of myeloid bodies in the epithelial cells.  相似文献   

18.
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retinal pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.  相似文献   

19.
Sonic hedgehog is involved in eye field separation along the proximodistal axis. We show that Hh signalling continues to be important in defining aspects of the proximodistal axis as the optic vesicle and optic cup mature. We show that two other Hedgehog proteins, Banded hedgehog and Cephalic hedgehog, related to the mouse Indian hedgehog and Desert hedgehog, respectively, are strongly expressed in the central retinal pigment epithelium but excluded from the peripheral pigment epithelium surrounding the ciliary marginal zone. By contrast, downstream components of the Hedgehog signalling pathway, Gli2, Gli3 and X-Smoothened, are expressed in this narrow peripheral epithelium. We show that this zone contains cells that are in the proliferative state. This equivalent region in the adult mammalian eye, the pigmented ciliary epithelium, has been identified as a zone in which retinal stem cells reside. These data, combined with double labelling and the use of other retinal pigment epithelium markers, show that the retinal pigment epithelium of tadpole embryos has a molecularly distinct peripheral to central axis. In addition, Gli2, Gli3 and X-Smoothened are also expressed in the neural retina, in the most peripheral region of the ciliary marginal zone, where retinal stem cells are found in Xenopus, suggesting that they are good markers for retinal stem cells. To test the role of the Hedgehog pathway at different stages of retinogenesis, we activated the pathway by injecting a dominant-negative form of PKA or blocking it by treating embryos with cyclopamine. Embryos injected or treated at early stages display clear proximodistal defects in the retina. Interestingly, the main phenotype of embryos treated with cyclopamine at late stages is a severe defect in RPE differentiation. This study thus provides new insights into the role of Hedgehog signalling in the formation of the proximodistal axis of the eye and the differentiation of retinal pigment epithelium.  相似文献   

20.
The embryonic chick has the ability to regenerate its retina after it has been completely removed. Here, we provide a detailed characterization of retina regeneration in the embryonic chick at the cellular level. Retina regeneration can occur in two distinct manners. The first is via transdifferentiation, which is induced by members of the Fibroblast growth factor (Fgf) family. The second type of retinal regeneration occurs from the anterior margin of the eye, near the ciliary body (CB) and ciliary marginal zone (CMZ). We show that regeneration from the CB/CMZ is the result of proliferating stem/progenitor cells. This type of regeneration is also stimulated by Fgf2, but we show that it can be activated by Sonic hedgehog (Shh) overexpression when no ectopic Fgf2 is present. Shh-stimulated activation of CB/CMZ regeneration is inhibited by the Fgf receptor (Fgfr) antagonist, PD173074. This indicates that Shh-induced regeneration acts through the Fgf signaling pathway. In addition, we show that the hedgehog (Hh) pathway plays a role in maintenance of the retina pigmented epithelium (RPE), as ectopic Shh expression inhibits transdifferentiation and Hh inhibition increases the transdifferentiation domain. Ectopic Shh expression in the regenerating retina also results in a decrease in the number of ganglion cells present and an increase in apoptosis mostly in the presumptive ganglion cell layer (GCL). However, Hh inhibition increases the number of ganglion cells but does not have an effect on cell death. Taken together, our results suggest that the hedgehog pathway is an important modulator of retina regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号