首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Hemodynamic consequences of rapid changes in posture in humans.   总被引:1,自引:0,他引:1  
Tolerance to +G(z) gravitational stress is reduced when +G(z) stress is preceded by exposure to hypogravity (fraction, 0, or negative G(z)). For example, there is an exaggerated fall in eye-level arterial pressure (ELAP) early on during +G(z) stress (head-up tilt; HUT) when this stress is immediately preceded by -G(z) stress (head-down tilt; HDT). The aims of the present study were to characterize the hemodynamic consequences of brief HDT on subsequent HUT and to test the hypothesis that an elevation in leg vascular conductance induced by -G(z) stress contributes to the exaggerated fall in ELAP. Young healthy subjects (n = 3 men and 4 women) were subjected to 30 s of 30 degrees HUT from a horizontal position and to 30 s of 30 degrees HUT when HUT was immediately preceded by 20 s of -15 degrees HDT. Four bouts of HDT-HUT were alternated between five bouts of HUT in a counterbalanced designed to minimize possible time effects of repeated exposure to gravitational stress. One minute was allowed for recovery between tilts. Brief exposure to HDT elicited an exaggerated fall in ELAP during the first seconds of the subsequent HUT (-17.9 +/- 1.4 mmHg) compared with HUT alone (-12.4 +/- 1.2 mmHg, P <0.05) despite a greater rise in stroke volume (Doppler ultrasound) and cardiac output over this brief time period in the HDT-HUT trials compared with the HUT trials (thereafter stroke volume fell under both conditions). The greater fall in ELAP was associated with an exaggerated increase in leg blood flow (femoral artery Doppler ultrasound) and was therefore largely (70%) attributable to an exaggerated rise in estimated leg vascular conductance, confirming our hypotheses. Thus brief exposure to -G(z) stress leads to an exaggerated fall in ELAP during subsequent HUT, owing to an exaggerated increase in estimated leg vascular conductance.  相似文献   

5.
6.
Short-term intermittent hypoxia leads to sustained sympathetic activation and a small increase in blood pressure in healthy humans. Because obstructive sleep apnea, a condition associated with intermittent hypoxia, is accompanied by elevated sympathetic activity and enhanced sympathetic chemoreflex responses to acute hypoxia, we sought to determine whether intermittent hypoxia also enhances chemoreflex activity in healthy humans. To this end, we measured the responses of muscle sympathetic nerve activity (MSNA, peroneal microneurography) to arterial chemoreflex stimulation and deactivation before and following exposure to a paradigm of repetitive hypoxic apnea (20 s/min for 30 min; O(2) saturation nadir 81.4 +/- 0.9%). Compared with baseline, repetitive hypoxic apnea increased MSNA from 113 +/- 11 to 159 +/- 21 units/min (P = 0.001) and mean blood pressure from 92.1 +/- 2.9 to 95.5 +/- 2.9 mmHg (P = 0.01; n = 19). Furthermore, compared with before, following intermittent hypoxia the MSNA (units/min) responses to acute hypoxia [fraction of inspired O(2) (Fi(O(2))) 0.1, for 5 min] were enhanced (pre- vs. post-intermittent hypoxia: +16 +/- 4 vs. +49 +/- 10%; P = 0.02; n = 11), whereas the responses to hyperoxia (Fi(O(2)) 0.5, for 5 min) were not changed significantly (P = NS; n = 8). Thus 30 min of intermittent hypoxia is capable of increasing sympathetic activity and sensitizing the sympathetic reflex responses to hypoxia in normal humans. Enhanced sympathetic chemoreflex activity induced by intermittent hypoxia may contribute to altered neurocirculatory control and adverse cardiovascular consequences in sleep apnea.  相似文献   

7.
Time-weighted averaging is a traditional method used in heat stress analyses to approximate, in terms of a single continuous level of heat production, the rate of heat production from complex intermittent exercise patterns. Physiological responses during intermittent and continuous exercise were studied in four subjects exposed to heat stress in which evaporation was either free or severely restricted. Intermittent work consisted of repeated 10-min exercise-rest patterns. Continuous work was at the time-weighted average of intermittent exercise: 3.3 mets. When heat stress was uncompensable, intermittent work induced more physiological strain than continuous work: endurance time was 14 min less (P less than 0.05); core temperature at 60 min was 0.40 degrees C higher (P less than 0.05); and, after 30 min of exposure, the rate of core temperature rise was 33% greater. The difference in the rate of heat storage was not satisfactorily explained by a discrepancy in the average rate of heat production or in the calculated rate of surface heat loss. Alternatively, the results may be partially explained by interruptions in the usual rate of heat transport via the cutaneous circulation. These interruptions may be caused by nonthermal factors associated with postural and work load transitions. Although the mechanisms are not totally understood, it is clear that application of the time-weighted averaging method can lead to erroneous overprediction of endurance time and should be applied with discretion.  相似文献   

8.
Somatic mosaicism -- the presence of genetically distinct populations of somatic cells in a given organism -- is frequently masked, but it can also result in major phenotypic changes and reveal the expression of otherwise lethal genetic mutations. Mosaicism can be caused by DNA mutations, epigenetic alterations of DNA, chromosomal abnormalities and the spontaneous reversion of inherited mutations. In this review, we discuss the human disorders that result from somatic mosaicism, as well as the molecular genetic mechanisms by which they arise. Specifically, we emphasize the role of selection in the phenotypic manifestations of mosaicism.  相似文献   

9.
One of the major manifestations of obstructive sleep apnea is profound and repeated hypoxia during sleep. Acute hypoxia leads to stimulation of the peripheral chemoreceptors, which in turn increases sympathetic outflow, acutely increasing blood pressure. The chronic effect of these repeated episodic or intermittent periods of hypoxia in humans is difficult to study because chronic cardiovascular changes may take many years to manifest. Rodents have been a tremendous source of information in short- and long-term studies of hypertension and other cardiovascular diseases. Recurrent short cycles of normoxia-hypoxia, when administered to rats for 35 days, allows examination of the chronic cardiovascular response to intermittent hypoxia patterned after the episodic desaturation seen in humans with sleep apnea. The result of this type of intermittent hypoxia in rats is a 10- to 14-mmHg increase in resting (unstimulated) mean blood pressure that lasts for several weeks after cessation of the daily cyclic hypoxia. Carotid body denervation, sympathetic nerve ablation, renal sympathectomy, adrenal medullectomy, and angiotensin II receptor blockade block the blood pressure increase. It appears that adrenergic and renin-angiotensin system overactivity contributes to the early chronic elevated blood pressure in rat intermittent hypoxia and perhaps to human hypertension associated with obstructive sleep apnea.  相似文献   

10.
11.
Keightley PD 《Genetics》2012,190(2):295-304
The human mutation rate per nucleotide site per generation (μ) can be estimated from data on mutation rates at loci causing Mendelian genetic disease, by comparing putatively neutrally evolving nucleotide sequences between humans and chimpanzees and by comparing the genome sequences of relatives. Direct estimates from genome sequencing of relatives suggest that μ is about 1.1 × 10(-8), which is about twofold lower than estimates based on the human-chimp divergence. This implies that an average of ~70 new mutations arise in the human diploid genome per generation. Most of these mutations are paternal in origin, but the male:female mutation rate ratio is currently uncertain and might vary even among individuals within a population. On the basis of a method proposed by Kondrashov and Crow, the genome-wide deleterious mutation rate (U) can be estimated from the product of the number of nucleotide sites in the genome, μ, and the mean selective constraint per site. Although the presence of many weakly selected mutations in human noncoding DNA makes this approach somewhat problematic, estimates are U ≈ 2.2 for the whole diploid genome per generation and 0.35 for mutations that change an amino acid of a protein-coding gene. A genome-wide deleterious mutation rate of 2.2 seems higher than humans could tolerate if natural selection is "hard," but could be tolerated if selection acts on relative fitness differences between individuals or if there is synergistic epistasis. I argue that in the foreseeable future, an accumulation of new deleterious mutations is unlikely to lead to a detectable decline in fitness of human populations.  相似文献   

12.
Birth asphyxia.     
  相似文献   

13.
The observation that muscular exercise is associated with oxidative stress in humans was first reported over 30 years ago. Since this initial report, numerous studies have confirmed that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle. Although the primary tissue(s) responsible for reactive oxygen species (ROS) production during exercise remains a topic of debate, compelling evidence indicates that muscular activity promotes oxidant production in contracting skeletal muscle fibers. Mitochondria, NADPH oxidase, PLA2-dependent processes, and xanthine oxidase have all been postulated to contribute to contraction-induced ROS production in muscle but the primary site of contraction-induced ROS production in muscle fibers remains unclear. Nonetheless, contraction-induced ROS generation has been shown to play an important physiological function in the regulation of both muscle force production and contraction-induced adaptive responses of muscle fibers to exercise training. Although knowledge in the field of exercise and oxidative stress has grown markedly during the past 30 years, this area continues to expand and there is much more to be learned about the role of ROS as signaling molecules in skeletal muscle.  相似文献   

14.
15.
Changes accompanying long-lasting intermittent muscle contractions (30%–50% of the maximal) were investigated by tracing the activity of 38 motor units (MU) of the human biceps brachii muscle recorded from fine-wire branched electrodes. The motor task was a continuous repetition of ramp-and-hold cycles of isometric flexion contractions. During ramp-up phases a significant decline in recruitment thresholds was found with no changes in the discharge pattern. During ramp-down phases the unchanged mean value of derecruitment thresholds during the task was accompanied by increased duration of the last two interspike intervals (ISI). These findings would suggest that during fatigue development the main compensatory mechanism during ramp-up contractions is space coding while for ramp-down contractions it is rate coding. During the steady-state phases the mean value of ISI, as well as the firing variability, had increased by the end of the task in most of the MU investigated . In addition 17 recruited MU were also investigated. These units revealed a lower initial discharge rate and a faster decrease in the mean discharge rate with the development of fatigue. The gradual reduction of the recruitment threshold of already active MU and the recruitment of new units demonstrated an increased excitability of the motorneuron pool during fatigue. A typical recruitment pattern (a first short ISI followed by a long one) was observed during ramp-up contractions in units active from the very beginning of the task, as well as during sustained contractions at the onset of the stable discharge of the additionally recruited MU. Accepted: 23 September 1997  相似文献   

16.
This paper compares the effects of sustained and intermittent contractions on electrical and mechanical failure during muscle fatigue in the human adductor pollicis electrically stimulated at 30 Hz via its motor nerve. Sixty-second sustained contractions are compared with a series of 60 1-s contractions, separated by 2.0-, 1.0-, and 0.5-s intervals for identical duration of tension development. Sixty-second sustained contractions decrease tetanic force to 60% (P less than 0.05) of initial values. No significant difference (P greater than 0.05) of force reduction was observed during intermittent 1-s contractions separated by 1-s intervals (-40%), but final force reduction was found to be significantly smaller (P less than 0.05) for 2-s intervals (-18%) and larger (P less than 0.05) for 0.5-s intervals (-65%). When identical force reduction is present in both fatigue tests, it appears that concomitant electrical failure is considerably different during sustained and intermittent contractions (P less than 0.05). This electromechanical dissociation suggests that slowing of conduction along nerve and muscle membranes, as well as possible increase of synaptic delay, does not explain the observed mechanical failure. It is therefore suggested that intracellular processes play the major role in contractile failure during sustained and intermittent contractions.  相似文献   

17.
Vøllestad, N. K., I. Sejersted, and E. Saugen. Mechanical behavior of skeletal muscle duringintermittent voluntary isometric contractions in humans.J. Appl. Physiol. 83(5):1557-1565, 1997.Changes in contractile speed and force-fusionproperties were examined during repetitive isometric contractions withthe knee extensors at three different target force levels. Sevenhealthy subjects were studied at target force levels of 30, 45, and60% of their maximal voluntary contraction (MVC) force. Repeated 6-s contractions followed by 4-s rest were continued until exhaustion. Contractile speed was determined for contractions elicited by electrical stimulation at 1-50 Hz given during exercise and a subsequent 27-min recovery period. Contraction time remained unchanged during exercise and recovery, except for an initial rapid shift in thetwitch properties. Half relaxation time(RT1/2) decreased gradually by 20-40% during exercise at 30 and 45% of MVC. In the recovery period, RT1/2 values werenot fully restored to preexercise levels. During exercise at 60% MVC,the RT1/2 decreased for twitches and increased for the 50-Hz stimulation. In the recovery period after60% MVC, RT1/2 values declinedtoward those seen after the 30 and 45% MVC exercise. The forceoscillation amplitude in unfused tetani relative to the mean forceincreased during exercise at 30 and 45% MVC but remained unalteredduring the 60% MVC exercise. This altered force-fusion was closelyassociated with the changes inRT1/2. The faster relaxation mayat least partly explain the increased energy cost of contractionreported previously for the same type of exercise.

  相似文献   

18.
Three intermittent suckling (IS) regimes were evaluated for their effects on lactational oestrus and subsequent fertility. Control sows were weaned (CW; n = 38) at d 26 ± 2 of lactation. In IS19-7D (n=40) and IS19-14D (n=42) sows, IS started at d 19 ± 1 of lactation and sows were weaned 7 or 14 d later. In IS26-7D (n=41), IS started at d 26 ± 1 of lactation and sows were weaned 7d later. During IS, sows were separated from their piglets for 10h/day. Oestrus detection was performed twice daily without a boar and ovulation was confirmed by ultrasound once a week. In IS19-7D, IS19-14D and IS26-7D, respectively, 50%, 64% and 61% of the sows showed oestrus and ovulation during IS (P>0.05), and, of the remaining sows, 100%, 93%, and 69% showed oestrus in the first week after weaning. In CW sows, 95% showed oestrus in the first week after weaning. Parity 1 sows were considerably less likely than older parities (23% vs. 68%) to show oestrus in lactation. Pregnancy rate of the first post partum oestrus (during lactation or after weaning) was 89% (CW), 92% (IS19-7D), 80% (IS19-14D) and 77% (IS26-7D) (P>0.05) and subsequent litter size was 14.5 ± 0.5, 14.5 ± 0.6, 15.3 ± 0.5 and 15.2 ± 0.8, respectively (P>0.05). Sows mated during lactation had similar pregnancy rate and litter size to those mated after weaning. Hence, ongoing lactation for the first 2-9 d of pregnancy did not negatively affect fertility. A total of 50-64% of IS sows showed lactational oestrus, regardless of the stage of lactation. Pregnancy rates and litter size were similar to control sows, and were not affected by stage of lactation at mating.  相似文献   

19.
To evaluate the effect of chronic beta 1-adrenoceptor blockade on physiological adaptation to asphyxia a study was done on exteriorized sheep fetuses of 127-142 days gestational age. Eleven pregnant ewes were infused with metoprolol for 5 days prior to experiment. Another 10 ewes were infused with saline and served as controls. Asphyxia was induced by intermittent complete obstruction of maternal placental blood flow. Fetal electro-cardiogram, heart rate, cardiac output, myocardial contractility and cerebral blood flow were measured together with blood pH, lactate and hypoxanthine. Neurophysiological responses were evaluated by changes in somatosensory evoked electroencephalogram. The beta 1-blocked fetuses showed less responsiveness in myocardial contractility and heart rate during reoxygenation. This curtailed reaction resulted in accelerated lactic acidosis, increased break-down of intracellular energy rich substances and impaired cerebral function. Nine of the ten controls survived the experiment and 8 of them regained their somatosensory evoked EEG potentials, whereas 7 of the 11 beta-blocked fetuses survived and only 3 regained original somatosensory evoked EEG potentials. It is concluded that beta 1-adrenoceptor blockade impairs the adaptive responses to asphyxia in the ovine fetus and decreases its ability to survive severe asphyxia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号