首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ProtoNet site provides an automatic hierarchical clustering of the SWISS-PROT protein database. The clustering is based on an all-against-all BLAST similarity search. The similarities' E-score is used to perform a continuous bottom-up clustering process by applying alternative rules for merging clusters. The outcome of this clustering process is a classification of the input proteins into a hierarchy of clusters of varying degrees of granularity. ProtoNet (version 1.3) is accessible in the form of an interactive web site at http://www.protonet.cs.huji.ac.il. ProtoNet provides navigation tools for monitoring the clustering process with a vertical and horizontal view. Each cluster at any level of the hierarchy is assigned with a statistical index, indicating the level of purity based on biological keywords such as those provided by SWISS-PROT and InterPro. ProtoNet can be used for function prediction, for defining superfamilies and subfamilies and for large-scale protein annotation purposes.  相似文献   

2.

Background

It is a major challenge of computational biology to provide a comprehensive functional classification of all known proteins. Most existing methods seek recurrent patterns in known proteins based on manually-validated alignments of known protein families. Such methods can achieve high sensitivity, but are limited by the necessary manual labor. This makes our current view of the protein world incomplete and biased. This paper concerns ProtoNet, a automatic unsupervised global clustering system that generates a hierarchical tree of over 1,000,000 proteins, based solely on sequence similarity.

Results

In this paper we show that ProtoNet correctly captures functional and structural aspects of the protein world. Furthermore, a novel feature is an automatic procedure that reduces the tree to 12% its original size. This procedure utilizes only parameters intrinsic to the clustering process. Despite the substantial reduction in size, the system's predictive power concerning biological functions is hardly affected. We then carry out an automatic comparison with existing functional protein annotations. Consequently, 78% of the clusters in the compressed tree (5,300 clusters) get assigned a biological function with a high confidence. The clustering and compression processes are unsupervised, and robust.

Conclusions

We present an automatically generated unbiased method that provides a hierarchical classification of all currently known proteins.
  相似文献   

3.
Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.  相似文献   

4.
MOTIVATION: Structural genomics projects aim to solve a large number of protein structures with the ultimate objective of representing the entire protein space. The computational challenge is to identify and prioritize a small set of proteins with new, currently unknown, superfamilies or folds. RESULTS: We develop a method that assigns each protein a likelihood of it belonging to a new, yet undetermined, structural superfamily. The method relies on a variant of ProtoNet, an automatic hierarchical classification scheme of all protein sequences from SwissProt. Our results show that proteins that are remote from solved structures in the ProtoNet hierarchy are more likely to belong to new superfamilies. The results are validated against SCOP releases from recent years that account for about half of the solved structures known to date. We show that our new method and the representation of ProtoNet are superior in detecting new targets, compared to our previous method using ProtoMap classification. Furthermore, our method outperforms PSI-BLAST search in detecting potential new superfamilies.  相似文献   

5.
The Institute for Genome Sciences (IGS) has developed a prokaryotic annotation pipeline that is used for coding gene/RNA prediction and functional annotation of Bacteria and Archaea. The fully automated pipeline accepts one or many genomic sequences as input and produces output in a variety of standard formats. Functional annotation is primarily based on similarity searches and motif finding combined with a hierarchical rule based annotation system. The output annotations can also be loaded into a relational database and accessed through visualization tools.  相似文献   

6.
Although there are several corpora with protein annotation, incompatibility between the annotations in different corpora remains a problem that hinders the progress of automatic recognition of protein names in biomedical literature. Here, we report on our efforts to find a solution to the incompatibility issue, and to improve the compatibility between two representative protein-annotated corpora: the GENIA corpus and the GENETAG corpus. In a comparative study, we improve our insight into the two corpora, and a series of experimental results show that most of the incompatibility can be removed.  相似文献   

7.
8.
Based on the hypotheses that (1) a physiological organization exists inside each activity of daily life and (2) the pattern of evolution of physiological variables is characteristic of each activity, pattern changes should be detected on daily life physiological recordings. The present study aims at investigating whether a simple segmentation method can be set up to detect pattern changes on physiological recordings carried out during daily life. Heart and breathing rates and skin temperature have been non-invasively recorded in volunteers following scenarios made of “daily life” steps (13 records). An observer, undergoing the scenario, wrote down annotations during the recording time. Two segmentation procedures have been compared to the annotations, a visual inspection of the signals and an automatic program based on a trends detection algorithm applied to one physiological signal (skin temperature). The annotations resulted in a total number of 213 segments defined on the 13 records, the best visual inspection detected less segments (120) than the automatic program (194). If evaluated in terms of the number of correspondences between the times marks given by annotations and those resulting from both physiologically based segmentations, the automatic program was better than the visual inspection. The mean time lags between annotation and program time marks remain <60 s (the precision of annotation times marks). We conclude that physiological variables time series recorded in common life conditions exhibit different successive patterns that can be detected by a simple trends detection algorithm. Theses sequences are coherent with the corresponding annotated activity.  相似文献   

9.
10.
11.
This work reports the completion and annotation of the genome sequence of Corynebacterium pseudotuberculosis I19, isolated from an Israeli dairy cow with severe clinical mastitis. To present the whole-genome sequence, a de novo assembly approach using 33 million short (25-bp) mate-paired SOLiD reads only was applied. Furthermore, the automatic, functional, and manual annotations were attained with the use of several algorithms in a multistep process.  相似文献   

12.
As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum.  相似文献   

13.
MOTIVATION: Contigs-Assembly and Annotation Tool-Box (CAAT-Box) is a software package developed for the computational part of a genome project where the sequence is obtained by a shotgun strategy. CAAT-Box contains new tools to predict links between contigs by using similarity searches with other whole genome sequences. Most importantly, it allows annotation of a genome to commence during the finishing phase using a gene-oriented strategy. For this purpose, CAAT-Box creates an Individual Protein file (IPF) for each ORF of an assembly. The nucleotide sequence reported in an IPF corresponds to the sequence of the ORF with 500 additional bases before the ORF and 200 bases after. For annotation, additional information like Blast results can be added or linked to the IPFs as well as automatic and/or manual annotations. When a new assembly is performed, CAAT-Box creates new IPFs according to the old IPF panel. CAAT-Box recognizes the modified IPFs which are the only ones used for a new automatic analysis after each assembly. Using this strategy, the user works with a group of IPFs independently of the closure phase progression. The IPFs are accessible by a web server and can therefore be modified and commented by different groups. RESULT: CAAT-Box was used to obtain and to annotate several complete genomes like Listeria monocytogenes or Streptococcus agalactiae. AVAILABILITY: The program may be obtained from the authors and is freely available to non-profit organisations.  相似文献   

14.
15.
Many sequenced genes are mainly annotated through automatic transfer of annotation from similar sequences. Manual comparison of results or intermediate results from different tools can help avoid wrong annotations and give hints to the function of a gene even if none of the automated tools could return any result. AFAWE simplifies the task of manual functional annotation by running different tools and workflows for automatic function prediction and displaying the results in a way that facilitates comparison. Because all programs are executed as web services, AFAWE is easily extensible and can directly query primary databases, thereby always using the most up-to-date data sources. Visual filters help to distinguish trustworthy results from non-significant results. Furthermore, an interface to add detailed manual annotation to each gene is provided, which can be displayed to other users.  相似文献   

16.
Sequence annotation is essential for genomics-based research. Investigators of a specific genomic region who have developed abundant local discoveries such as genes and genetic markers, or have collected annotations from multiple resources, can be overwhelmed by the difficulty in creating local annotation and the complexity of integrating all the annotations. Presenting such integrated data in a form suitable for data mining and high-throughput experimental design is even more daunting. DNannotator, a web application, was designed to perform batch annotation on a sizeable genomic region. It takes annotation source data, such as SNPs, genes, primers, and so on, prepared by the end-user and/or a specified target of genomic DNA, and performs de novo annotation. DNannotator can also robustly migrate existing annotations in GenBank format from one sequence to another. Annotation results are provided in GenBank format and in tab-delimited text, which can be imported and managed in a database or spreadsheet and combined with existing annotation as desired. Graphic viewers, such as Genome Browser or Artemis, can display the annotation results. Reference data (reports on the process) facilitating the user's evaluation of annotation quality are optionally provided. DNannotator can be accessed at http://sky.bsd.uchicago.edu/DNannotator.htm.  相似文献   

17.

Background  

Computational protein annotation methods occasionally introduce errors. False-positive (FP) errors are annotations that are mistakenly associated with a protein. Such false annotations introduce errors that may spread into databases through similarity with other proteins. Generally, methods used to minimize the chance for FPs result in decreased sensitivity or low throughput. We present a novel protein-clustering method that enables automatic separation of FP from true hits. The method quantifies the biological similarity between pairs of proteins by examining each protein's annotations, and then proceeds by clustering sets of proteins that received similar annotation into biological groups.  相似文献   

18.
The use of quantitative metrics to gauge the impact of scholarly publications, authors, and disciplines is predicated on the availability of reliable usage and annotation data. Citation and download counts are widely available from digital libraries. However, current annotation systems rely on proprietary labels, refer to journals but not articles or authors, and are manually curated. To address these limitations, we propose a social framework based on crowdsourced annotations of scholars, designed to keep up with the rapidly evolving disciplinary and interdisciplinary landscape. We describe a system called Scholarometer, which provides a service to scholars by computing citation-based impact measures. This creates an incentive for users to provide disciplinary annotations of authors, which in turn can be used to compute disciplinary metrics. We first present the system architecture and several heuristics to deal with noisy bibliographic and annotation data. We report on data sharing and interactive visualization services enabled by Scholarometer. Usage statistics, illustrating the data collected and shared through the framework, suggest that the proposed crowdsourcing approach can be successful. Secondly, we illustrate how the disciplinary bibliometric indicators elicited by Scholarometer allow us to implement for the first time a universal impact measure proposed in the literature. Our evaluation suggests that this metric provides an effective means for comparing scholarly impact across disciplinary boundaries.  相似文献   

19.
Despite the structure and objectivity provided by the Gene Ontology (GO), the annotation of proteins is a complex task that is subject to errors and inconsistencies. Electronically inferred annotations in particular are widely considered unreliable. However, given that manual curation of all GO annotations is unfeasible, it is imperative to improve the quality of electronically inferred annotations. In this work, we analyze the full GO molecular function annotation of UniProtKB proteins, and discuss some of the issues that affect their quality, focusing particularly on the lack of annotation consistency. Based on our analysis, we estimate that 64% of the UniProtKB proteins are incompletely annotated, and that inconsistent annotations affect 83% of the protein functions and at least 23% of the proteins. Additionally, we present and evaluate a data mining algorithm, based on the association rule learning methodology, for identifying implicit relationships between molecular function terms. The goal of this algorithm is to assist GO curators in updating GO and correcting and preventing inconsistent annotations. Our algorithm predicted 501 relationships with an estimated precision of 94%, whereas the basic association rule learning methodology predicted 12,352 relationships with a precision below 9%.  相似文献   

20.
The Human Protein Atlas contains immunofluorescence images showing subcellular locations for thousands of proteins. These are currently annotated by visual inspection. In this paper, we describe automated approaches to analyze the images and their use to improve annotation. We began by training classifiers to recognize the annotated patterns. By ranking proteins according to the confidence of the classifier, we generated a list of proteins that were strong candidates for reexamination. In parallel, we applied hierarchical clustering to group proteins and identified proteins whose annotations were inconsistent with the remainder of the proteins in their cluster. These proteins were reexamined by the original annotators, and a significant fraction had their annotations changed. The results demonstrate that automated approaches can provide an important complement to visual annotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号