首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-linked glycosylation requires the synthesis of an evolutionarily conserved lipid-linked oligosaccharide (LLO) precursor that is essential for glycoprotein folding and stability. Despite intense research, several of the enzymes required for LLO synthesis have not yet been identified. Here we show that two poorly characterized yeast proteins known to be required for the synthesis of the LLO precursor, GlcNAc2-PP-dolichol, interact to form an unusual hetero-oligomeric UDP-GlcNAc transferase. Alg13 contains a predicted catalytic domain, but lacks any membrane-spanning domains. Alg14 spans the membrane but lacks any sequences predicted to play a direct role in sugar catalysis. We show that Alg14 functions as a membrane anchor that recruits Alg13 to the cytosolic face of the ER, where catalysis of GlcNAc2-PP-dol occurs. Alg13 and Alg14 physically interact and under normal conditions, are associated with the ER membrane. Overexpression of Alg13 leads to its cytosolic partitioning, as does reduction of Alg14 levels. Concomitant Alg14 overproduction suppresses this cytosolic partitioning of Alg13, demonstrating that Alg14 is both necessary and sufficient for the ER localization of Alg13. Further evidence for the functional relevance of this interaction comes from our demonstration that the human ALG13 and ALG14 orthologues fail to pair with their yeast partners, but when co-expressed in yeast can functionally complement the loss of either ALG13 or ALG14. These results demonstrate that this novel UDP-GlcNAc transferase is a unique eukaryotic ER glycosyltransferase that is comprised of at least two functional polypeptides, one that functions in catalysis and the other as a membrane anchor.  相似文献   

2.
N-linked glycosylation begins in the endoplasmic reticulum with the synthesis of a highly conserved dolichol-linked oligosaccharide precursor. The UDP-GlcNAc glycosyltransferase catalyzing the second sugar addition of this precursor consists in most eukaryotes of at least two subunits, Alg14 and Alg13. Alg14 is a membrane protein that recruits the soluble Alg13 catalytic subunit from the cytosol to the face of the endoplasmic reticulum (ER) membrane where this reaction occurs. Here, we investigated the membrane topology of Saccharomyces cerevisiae Alg14 and its requirements for ER membrane association. Alg14 is predicted by most algorithms to contain one or more transmembrane spanning helices (transmembrane domains (TMDs)). We provide evidence that Alg14 contains a C-terminal cytosolic tail and an N terminus that resides within the ER lumen. However, we also demonstrate that Alg14 lacking this TMD is functional and remains peripherally associated with ER membranes, suggesting that additional domains can mediate ER association. These conclusions are based on the functional analysis of Alg13/Alg14 chimeras containing Alg13 fused at either end of Alg14 or truncated Alg14 variants lacking the predicted TMD; protease protection assays of Alg14 in intact ER membranes; and extraction of Alg14-containing ER membranes with high pH. These yeast Alg13-Alg14 chimeras recapitulate the phylogenetic diversity of Alg13-Alg14 domain arrangements that evolved in some protozoa. They encode single polypeptides containing an Alg13 domain fused to Alg14 domain in either orientation, including those lacking the Alg14 TMD. Thus, this Alg13-Alg14 UDP-GlcNAc transferase represents an unprecedented example of a bipartite glycosyltransferase that evolved by both fission and fusion.  相似文献   

3.
BackgroundN-glycosylation is initiated from the biosynthesis of lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER), which is catalyzed by a series of Alg (asparagine-linked glycosylation) proteins.Scope of reviewThis review summarizes our recent studies on the enzymology of Alg mannosyltransferases (MTases). We also discuss the membrane topology and physiological importance of several ER cytosolic Alg proteins.Major conclusionsUtilizing an efficient prokaryotic protein expression system and a new LC–MS quantitative activity assay, we overexpressed all Alg MTases and performed enzymology studies. Moreover, by reconstituting the LLO pathway, the high-yield chemoenzymatic synthesis of high-mannose-type N-glycans was accomplished using recombinant Alg MTases.General significanceThe analysis of the enzymology and topology of Alg MTases has provided valuable biochemical information in the LLO biosynthesis pathway. In addition, an efficient chemoenzymatic strategy that could prepare various oligomannose-type N-glycans in sufficient amounts was established for further biological assays.  相似文献   

4.
The second step of dolichol-linked oligosaccharide synthesis in the N-linked glycosylation pathway at the endoplasmic reticulum (ER) membrane is catalyzed by an unusual hetero-oligomeric UDP-N-acetylglucosamine transferase that in most eukaryotes is comprised of at least two subunits, Alg13p and Alg14p. Alg13p is the cytosolic and catalytic subunit that is recruited to the ER by the membrane protein Alg14p. We show that in Saccharomyces cerevisiae, cytosolic Alg13p is very short-lived, whereas membrane-associated Alg13 is relatively stable. Cytosolic Alg13p is a target for proteasomal degradation, and the failure to degrade excess Alg13p leads to glycosylation defects. Alg13p degradation does not require ubiquitin but instead, requires a C-terminal domain whose deletion results in Alg13p stability. Conversely, appending this sequence onto normally long-lived beta-galactosidase causes it to undergo rapid degradation, demonstrating that this C-terminal domain represents a novel and autonomous degradation motif. These data lead to the model that proteasomal degradation of excess unassembled Alg13p is an important quality control mechanism that ensures proper protein complex assembly and correct N-linked glycosylation.  相似文献   

5.
The second step of eukaryotic N-linked glycosylation in endoplasmic reticulum is catalyzed by an UDP-N-acetylglucosamine transferase that is comprised of two subunits, Alg13 and Alg14. The interaction between Alg13 and 14 is crucial for UDP-GlcNAc transferase activity, so formation of the Alg13/14 complex is likely to play a key role in the regulation of N-glycosylation. Using a combination of bioinformatics and molecular biological methods, we have undertaken a functional analysis of yeast Alg13 and Alg14 proteins to elucidate the mechanism of their interaction. Our mutational studies demonstrated that a short C-terminal alpha-helix of Alg13 is required for interaction with Alg14 and for enzyme activity. Electrostatic surface views of the modeled Alg13/14 complex suggest the presence of a hydrophobic cleft in Alg14 that provides a pocket for the Alg13 C-terminal alpha-helix. Co-immunoprecipitation assays confirmed the C-terminal three amino acids of Alg14 are required for maintaining the integrity of Alg13/Alg14 complex, and this depends on their hydrophobicity. Modeling studies place these three Alg14 residues at the entrance of the hydrophobic-binding pocket, suggesting their role in the stabilization of the interaction between the C termini of Alg13 and Alg14. Together, these results demonstrate that formation of this hetero-oligomeric complex is mediated by a short C-terminal alpha-helix of Alg13 in cooperation with the last three amino acids of Alg14. In addition, deletion of the N-terminal beta-strand of Alg13 caused the destruction of protein, indicating the structural importance of this region in protein stability.  相似文献   

6.
Gao XD  Nishikawa A  Dean N 《Glycobiology》2004,14(6):559-570
The early steps of N-linked glycosylation involve the synthesis of a lipid-linked oligosaccharide, Glc(3)Man(9)GlcNAc(2)-PP-dolichol, on the endoplasmic reticulum (ER) membrane. Prior to its lumenal translocation and transfer to nascent glycoproteins, mannosylation of Man(5)GlcNAc(2)-PP-dolichol is catalyzed by the Alg1, Alg2, and Alg11 mannosyltransferases. We provide evidence for a physical interaction between these proteins. Using a combination of biochemical and genetic assays, two distinct complexes that contain multiple copies of Alg1 were identified. The two Alg1-containing complexes differ from one another in that one complex contains Alg2 and the other contains Alg11. Alg1 self-assembles through a C-terminal domain that is distinct from the region required for its association with Alg2 or Alg11. Missense mutations affecting catalysis but not Alg1 protein stability or assembly with Alg2 or Alg11 were also identified. Overexpression of these catalytically inactive alleles resulted in dominant negative phenotypes, providing genetic evidence for functional Alg1-containing complexes in vivo. These data suggest that an additional level of regulation that ensures the fidelity of complex oligosaccharide structures involves the physical association of the related catalytic enzymes in the ER membrane.  相似文献   

7.
N-Glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to man. Here we identify and characterize two essential yeast proteins having homology to bacterial glycosyltransferases, designated Alg13p and Alg14p, as being required for the formation of GlcNAc(2)-PP-dolichol (Dol), the second step in the biosynthesis of the unique lipid-linked core oligosaccharide. Down-regulation of each gene led to a defect in protein N-glycosylation and an accumulation of GlcNAc(1)-PP-Dol in vivo as revealed by metabolic labeling with [(3)H]glucosamine. Microsomal membranes from cells repressed for ALG13 or ALG14, as well as detergent-solubilized extracts thereof, were unable to catalyze the transfer of N-acetylglucosamine from UDP-GlcNAc to [(14)C]GlcNAc(1)-PP-Dol, but did not impair the formation of GlcNAc(1)-PP-Dol or GlcNAc-GPI. Immunoprecipitating Alg13p from solubilized extracts resulted in the formation of GlcNAc(2)-PP-Dol but required Alg14p for activity, because an Alg13p immunoprecipitate obtained from cells in which ALG14 was down-regulated lacked this activity. In Western blot analysis it was demonstrated that Alg13p, for which no well defined transmembrane segment has been predicted, localizes both to the membrane and cytosol; the latter form, however, is enzymatically inactive. In contrast, Alg14p is exclusively membrane-bound. Repression of the ALG14 gene causes a depletion of Alg13p from the membrane. By affinity chromatography on IgG-Sepharose using Alg14-ZZ as bait, we demonstrate that Alg13-myc co-fractionates with Alg14-ZZ. The data suggest that Alg13p associates with Alg14p to a complex forming the active transferase catalyzing the biosynthesis of GlcNAc(2)-PP-Dol.  相似文献   

8.
The solution structure of Alg13, the glycosyl donor-binding domain of an important bipartite glycosyltransferase in the yeast Saccharomyces cerevisiae, is presented. This glycosyltransferase is unusual in that it is active only in the presence of a binding partner, Alg14. Alg13 is found to adopt a unique topology among glycosyltransferases. Rather than the conventional Rossmann fold found in all GT-B enzymes, the N-terminal half of the protein is a Rossmann-like fold with a mixed parallel and antiparallel beta sheet. The Rossmann fold of the C-terminal half of Alg13 is conserved. However, although conventional GT-B enzymes usually possess three helices at the C terminus, only two helices are present in Alg13. Titration of Alg13 with both UDP-GlcNAc, the native glycosyl donor, and a paramagnetic mimic, UDP-TEMPO, shows that the interaction of Alg13 with the sugar donor is primarily through the residues in the C-terminal half of the protein.  相似文献   

9.
The NTB-VPg protein of Tomato ringspot nepovirus is an integral membrane protein found in association with endoplasmic reticulum (ER)-derived membranes active in virus replication. A transmembrane helix present in a hydrophobic region at the C terminus of the NTB domain was previously shown to traverse the membranes, resulting in the translocation of the VPg domain in the lumen. We have now conducted an in planta analysis of membrane-targeting domains within NTB-VPg using in-frame fusions to the green fluorescent protein (GFP). As expected, the entire NTB-VPg protein directed the GFP fluorescence to ER membranes. GFP fusion proteins containing the C-terminal 86 amino acids of NTB-VPg also associated with ER membranes, resulting in ER-specific glycosylation at a naturally occurring glycosylation site in the VPg domain. Deletion of the hydrophobic region prevented the membrane association. The N-terminal 80 amino acids of NTB were also sufficient to direct the GFP fluorescence to intracellular membranes. A putative amphipathic helix in this region was necessary and sufficient to promote membrane association of the fusion proteins. Using in vitro membrane association assays and glycosylation site mapping, we show that the N terminus of NTB can be translocated in the lumen at least in vitro. This translocation was dependent on the presence of the putative amphipathic helix, suggesting that oligomeric forms of this helix traverse the membrane. Taken together, our results suggest that at least two distinct elements play a key role in the insertion of NTB-VPg in the membranes: a C-terminal transmembrane helix and an N-terminal amphipathic helix. An updated model of the topology of the protein in the membrane is presented.  相似文献   

10.
Chs3, the catalytic subunit of chitin synthase III in Saccharomyces cerevisiae, is a complex polytopic membrane protein whose plasma membrane expression is tightly controlled: export from the ER requires interaction with Chs7; exit from the Golgi is dependent on the exomer complex, and precise bud neck localization relies on endocytosis. Moreover, Chs3 is efficiently recycled from endosomes to the TGN in an AP‐1‐dependent manner. Here we show that the export of Chs3 requires the cargo receptor Erv14, in a step that is independent of Chs7. Chs3 oligomerized in the ER through its N‐terminal cytosolic region. However, the truncated Δ126Chs3 was still exported by Erv14, but was sent back from the Golgi to the ER in a COPI‐ and Rer1‐dependent manner. A subset of the oligomerization‐deficient Chs3 proteins evaded Golgi quality control and reached the plasma membrane, where they were enzymatically active but poorly endocytosed. This resulted in high CSIII levels, but calcofluor white resistance, explained by the reduced intercalation of calcofluor white between nascent chitin fibres. Our data show that the oligomerization of Chs3 through its N‐terminus is essential for proper protein trafficking and chitin synthesis and is therefore monitored intracellularly.  相似文献   

11.
RNA replication of all positive-strand RNA viruses is closely associated with intracellular membranes. Brome mosaic virus (BMV) RNA replication occurs on the perinuclear region of the endoplasmic reticulum (ER), both in its natural plant host and in the yeast Saccharomyces cerevisiae. The only viral component in the BMV RNA replication complex that localizes independently to the ER is 1a, a multifunctional protein with an N-terminal RNA capping domain and a C-terminal helicase-like domain. The other viral replication components, the RNA polymerase-like protein 2a and the RNA template, depend on 1a for recruitment to the ER. We show here that, in membrane extracts, 1a is fully susceptible to proteolytic digestion in the absence of detergent and thus, a finding consistent with its roles in RNA replication, is wholly or predominantly on the cytoplasmic face of the ER with no detectable lumenal protrusions. Nevertheless, 1a association with membranes is resistant to high-salt and high-pH treatments that release most peripheral membrane proteins. Membrane flotation gradient analysis of 1a deletion variants and 1a segments fused to green fluorescent protein (GFP) showed that sequences in the N-terminal RNA capping module of 1a mediate membrane association. In particular, a region C-terminal to the core methyltransferase homology was sufficient for high-affinity ER membrane association. Confocal immunofluorescence microscopy showed that even though these determinants mediate ER localization, they fail to localize GFP to the narrow region of the perinuclear ER, where full-length 1a normally resides. Instead, they mediate a more globular or convoluted distribution of ER markers. Thus, additional sequences in 1a that are distinct from the primary membrane association determinants contribute to 1a's normal subcellular distribution, possibly through effects on 1a conformation, orientation, or multimerization on the membrane.  相似文献   

12.
The deglycosylating enzyme, peptide:N-glycanase, acts on misfolded N-linked glycoproteins dislocated from the endoplasmic reticulum (ER) to the cytosol. Deglycosylation has been demonstrated to occur at the ER membrane and in the cytosol. However, the mechanism of PNGase association with the ER membrane was unclear, because PNGase lacked the necessary signal to facilitate its incorporation in the ER membrane, nor was it known to bind to an integral ER protein. Using HeLa cells, we have identified a membrane protein that associates with PNGase, thereby bringing it in close proximity to the ER and providing accessibility to dislocating glycoproteins. This protein, Derlin-1, has recently been shown to mediate retrotranslocation of misfolded glycoproteins. In this study we demonstrate that Derlin-1 interacts with the N-terminal domain of PNGase via its cytosolic C-terminus. Moreover, we find PNGase distributed in two populations; ER-associated and free in the cytosol, which suggests the deglycosylation process can proceed at either site depending on the glycoprotein substrate.  相似文献   

13.
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.  相似文献   

14.
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.  相似文献   

15.
To understand how the molecular chaperone Hsp90 participates in conformational maturation of the estrogen receptor (ER), we analyzed the interaction of immobilized purified avian Hsp90 with mammalian cytosolic ER. Hsp90 was either immunoadsorbed to BF4 antibody-Sepharose or GST-Hsp90 fusion protein (GST.90) was adsorbed to glutathione-Sepharose. GST.90 was able to retain specifically ER, similarly to immunoadsorbed Hsp90. When cells were treated with estradiol and the hormone treatment was maintained during cell homogenization, binding, and washing steps, GST.90 still interacted efficiently with ER, suggesting that ER may form complexes with Hsp90 even after its activation by hormone and salt extraction from nuclei. The GST.90-ER interaction was consistently reduced in the presence of increasing concentrations of potassium chloride or when cytosolic ER-Hsp90 complexes were previously stabilized by molybdate, indicating that GST.90-ER complexes behave like cytosolic Hsp90-ER complexes. A purified thioredoxin-ER fusion protein was also able to form complexes with GST.90, suggesting that the presence of other chaperones is not required. ER was retained only by GST.90 deletion mutants bearing an intact Hsp90 N-terminal region (1-224), the interaction being more efficient when the charged region A was present in the mutant (1-334). The N-terminal fragment 1-334, devoid of the dimeric GST moiety, was also able to interact with ER, pointing to the monomeric N-terminal adenosine triphosphate binding region of Hsp90 (1-224) as the region necessary and sufficient for interaction. These results contribute to understand the Hsp90-dependent process responsible for conformational competence of ER.  相似文献   

16.
N-Linked glycosylation involves the ordered, stepwise synthesis of the unique lipid-linked oligosaccharide precursor Glc3Man9 GlcNAc2-PP-Dol on the endoplasmic reticulum (ER), catalyzed by a series of glycosyltransferases. Here we characterize Alg2 as a bifunctional enzyme that is required for both the transfer of the α1,3- and the α1,6-mannose-linked residue from GDP-mannose to Man1GlcNAc2-PP-Dol forming the Man3GlcNAc2-PP-Dol intermediate on the cytosolic side of the ER. Alg2 has a calculated mass of 58 kDa and is predicted to contain four transmembrane-spanning helices, two at the N terminus and two at the C terminus. Contradictory to topology predictions, we prove that only the two N-terminal domains fulfill this criterion, whereas the C-terminal hydrophobic sequences contribute to ER localization in a nontransmembrane manner. Surprisingly, none of the four domains is essential for transferase activity because truncated Alg2 variants can exert their function as long as Alg2 is associated with the ER by either its N- or C-terminal hydrophobic regions. By site-directed mutagenesis we demonstrate that an EX7E motif, conserved in a variety of glycosyltransferases, is not important for Alg2 function in vivo and in vitro. Instead, we identify a conserved lysine residue, Lys230, as being essential for activity, which could be involved in the binding of the phosphate of the glycosyl donor.Asparagine-linked glycosylation is an essential protein modification highly conserved in eukaryotes (14), and several features of this pathway even occur in prokaryotes (57). In eukaryotes, biosynthesis of N-glycans starts with the assembly of the common core oligosaccharide precursor Glc3Man9 GlcNAc2-PP-Dol, the glycan moiety of which is subsequently transferred onto selected Asn-Xaa-(Ser/Thr) acceptor sites of the nascent polypeptide chain by the oligosaccharyl-transferase complex (810). The initial steps of the dolichol pathway up to Man5GlcNAc2-PP-Dol take place on the cytosolic site of the endoplasmic reticulum (ER),2 using sugar nucleotides as glycosyl donors. Upon translocation of the heptasaccharide to the luminal site, which is facilitated by Rft1 (11) and another not yet identified protein (12), it is extended by four mannose and three glucose residues deriving from Man-P-Dol and Glc-P-Dol. It has been demonstrated that the pathway operates sequentially in an ordered fashion based on differences in the substrate specificity of the various glycosyltransferases (13). In the yeast Saccharomyces cerevisiae, alg mutants (for asparagine-linked glycosylation) have been isolated, defective in lipid-linked oligosaccharide (LLO) assembly (1417), and shown to be invaluable to define the pathway as well as to isolate the genes encoding the respective glycosyltransferases by complementing a particular phenotype characteristic of the respective mutant. Likewise various mutant cell lines from mammalian origin have been described that produce truncated lipid-linked oligosaccharides (1820).One of the temperature-sensitive alg mutants, alg2, was shown to accumulate lipid-linked Man2GlcNAc2 at the restrictive temperature (15), indicating that alg2 might have a defect in the glycosyltransferase catalyzing the transfer of the third, α1,6-linked mannose, i.e. in the formation of the branched pentasaccharide Man3GlcNAc2-PP-Dol (see Fig. 8). On the other hand, biochemical studies in human fibroblasts from a patient with a defect in the human ALG2 ortholog, causing congenital disorder of glycosylation type CDG1i, pointed to a role in the transfer of the second, α1,3-linked mannose residue, because no elongation of Man(1,6)ManGlcNAc2-PP-Dol occurred (21). In contrast, control fibroblasts were able to do so, albeit with reduced efficiency when compared with Man(1,3)ManGlcNAc2-PP-Dol as glycosyl acceptor. Because a bioinformatic approach of the yeast data base did not reveal an unknown open reading frame that might encode an additional putative mannosyltransferase being involved in LLO synthesis, we reasoned that ALG2 may have a dual function, i.e. synthesizing both Man2GlcNAc2-PP-Dol and Man3GlcNAc2-PP-Dol. While the current study was in progress, evidence was presented that a membrane fraction from Escherichia coli, expressing ALG2 from yeast, is able to carry out an α1,3- and α1,6-mannosylation to form the branched pentasaccharide intermediate (22). However, the contribution of native E. coli enzymes could not entirely be ruled out. So far Alg2 has not been studied biochemically in yeast. Here, we confirm and extent this finding by investigating Alg2 in yeast. We first established a radioactive in vitro assay and demonstrate that Alg2, immunoprecipitated from detergent extracts of yeast microsomal membranes, is indeed sufficient to catalyze both elongation of Man1GlcNAc2-PP-Dol to Man2GlcNAc2-PP-Dol and subsequently to Man3GlcNAc2-PP-Dol. Furthermore we investigated the membrane topology of Alg2 mannosyltransferase. Evidence will be presented that Alg2 is composed only of the two N-terminal of four predicted transmembrane domains (TMDs), whereas the C-terminal hydrophobic sequences contribute to ER localization merely in a nontransmembrane manner. Surprisingly, none of the four domains is essential for Alg2 activity because deletion of either the two N-terminal or C-terminal domains gives rise to an active transferase. Finally, we perform a mutational analysis of Alg2 and identify amino acids required for its activity.Open in a separate windowFIGURE 8.Early steps of lipid-linked oligosaccharide formation on the cytosolic side of the ER membrane. Biosynthesis starts with the transfer of a GlcNAc-phosphate to dolichol phosphate with formation of the pyrophosphate bond, catalyzed by Alg7. The second step is catalyzed be the dimeric Alg14/Alg13 complex, whereby membrane-bound Alg14 recruits cytosolic Alg13 to the membrane with formation of the active GlcNAc transferase. Following the addition of the β1,4-linked mannose by Alg1, Alg2 catalyzes, as demonstrated here, both the transfer of the α1,3- and α1,6-linked mannose. The two final α1,2-mannose residues are transferred by Alg11, before the Man5GlcNAc2-PP heptasaccharide is translocated across the ER membrane to the lumen, where further elongation takes place to the full-length core saccharide. All of the sugar residues are donated by sugar nucleotides.  相似文献   

17.
Zheng Z  Yang R  Bodner ML  Weliky DP 《Biochemistry》2006,45(43):12960-12975
The human immunodeficiency virus (HIV) fusion peptide (HFP) is the N-terminal apolar region of the HIV gp41 fusion protein and interacts with target cell membranes and promotes membrane fusion. The free peptide catalyzes vesicle fusion at least to the lipid mixing stage and serves as a useful model fusion system. For gp41 constructs which lack the HFP, high-resolution structures show trimeric protein and suggest that at least three HFPs interact with the membrane with their C-termini in close proximity. In addition, previous studies have demonstrated that HFPs which are cross-linked at their C-termini to form trimers (HFPtr) catalyze fusion at a rate which is 15-40 times greater than that of non-cross-linked HFP. In the present study, the structure of membrane-associated HFPtr was probed with solid-state nuclear magnetic resonance (NMR) methods. Chemical shift and intramolecular (13)CO-(15)N distance measurements show that the conformation of the Leu-7 to Phe-11 region of HFPtr has predominant helical conformation in membranes without cholesterol and beta strand conformation in membranes containing approximately 30 mol % cholesterol. Interstrand (13)CO-(13)CO and (13)CO-(15)N distance measurements were not consistent with an in-register parallel strand arrangement but were consistent with either (1) parallel arrangement with adjacent strands two residues out-of-register or (2) antiparallel arrangement with adjacent strand crossing between Phe-8 and Leu-9. Arrangement 1 could support the rapid fusion rate of HFPtr because of placement of the apolar N-terminal regions of all strands on the same side of the oligomer while arrangement 2 could support the assembly of multiple fusion protein trimers.  相似文献   

18.
Verghese J  Morano KA 《Eukaryotic cell》2012,11(8):1003-1011
Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that assists in the folding of nascent chains and the repair of unfolded proteins through iterative cycles of ATP binding, hydrolysis, and nucleotide exchange tightly coupled to polypeptide binding and release. Cochaperones, including nucleotide exchange factors (NEFs), modulate the rate of ADP/ATP exchange and serve to recruit Hsp70 to distinct processes or locations. Among three nonrelated cytosolic NEFs in Saccharomyces cerevisiae, the Bag-1 homolog SNL1 is unique in being tethered to the endoplasmic reticulum (ER) membrane. We demonstrate here a novel physical association between Snl1 and the intact ribosome. This interaction is both independent of and concurrent with binding to Hsp70 and is not dependent on membrane localization. The ribosome binding site is identified as a short lysine-rich motif within the amino terminus of the Snl1 BAG domain distinct from the Hsp70 interaction region. Additionally, we demonstrate a ribosome association with the Candida albicans Snl1 homolog and localize this putative NEF to a perinuclear/ER membrane, suggesting functional conservation in fungal BAG domain-containing proteins. We therefore propose that the Snl1 family of NEFs serves a previously unknown role in fungal protein biogenesis based on the coincident recruitment of ribosomes and Hsp70 to the ER membrane.  相似文献   

19.
SEC62 encodes an essential component of the Sec-complex that is responsible for posttranslational protein translocation across the membrane of the endoplasmic reticulum in Saccharomyces cerevisiae. The specific role of Sec62p in translocation was not known and difficult to identify because it is part of an oligomeric protein complex in the endoplasmic reticulum membrane. An in vivo competition assay allowed us to characterize and dissect physical and functional interactions between Sec62p and components of the Sec-complex. We could show that Sec62p binds via its cytosolic N- and C-terminal domains to the Sec-complex. The N-terminal domain, which harbors the major interaction site, binds directly to the last 14 residues of Sec63p. The C-terminal binding site of Sec62p is less important for complex stability, but adjoins the region in Sec62p that might be involved in signal sequence recognition.  相似文献   

20.
Cubilin, the receptor for intrinsic factor-vitamin B12, is a novel type of high molecular weight receptor consisting of a 27 CUB (complement components C1r/C1s, Uegf, and bone morphogenic protein-1) domain cluster preceded by 8 epidermal growth factor repeats and a short N-terminal sequence. In addition to binding the vitamin B12-carrier complex, cubilin also binds receptor-associated protein. To delineate the structures for membrane association and ligand binding we established a panel of stable transfected Chinese hamster ovary cells expressing overlapping segments of rat cubilin. Analysis of conditioned media and cell extracts of transfected cells revealed that the N-terminal cubilin region conveys membrane association. Helical plotting of this region demonstrated a conserved amphipathic helix pattern (Lys74-Glu109) as a candidate site for hydrophobic interactions. Ligand affinity chromatography and surface plasmon resonance analysis of the secreted cubilin fragments showed ligand binding in the CUB domain region. Further dissection of binding-active fragments localized the binding site for intrinsic factor-vitamin B12 to CUB domains 5-8 and a receptor-associated protein-binding site to CUB domains 13-14. In conclusion, the N-terminal cubilin region seems crucial for membrane association, whereas the CUB domain cluster harbors distinct sites for ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号